Short light pulse amplification using the stimulated Brillouin backscattering mechanism is considered. The novel feature is that the interaction process takes place in the strongly coupled regime and therefore the pulse compression is not limited by the ion-acoustic wave period. The mechanism is very efficient due to the large ratio of light frequency to the characteristic ion-acoustic wave frequency. Although large-amplitude ion-acoustic waves are generated and subsequent wave breaking takes place, the fluid and kinetic nonlinearities do not intervene with the amplification itself.
Recent advances in high-harmonic generation gave rise to soft X-ray pulses with higher intensity, shorter duration and higher photon energy. One of the remaining shortages of this source is its restriction to linear polarization, since the yield of generation of elliptically polarized high harmonics has been low so far. We here show how this limitation is overcome by using a cross-polarized two-colour laser field. With this simple technique, we reach high degrees of ellipticity (up to 75%) with efficiencies similar to classically generated linearly polarized harmonics. To demonstrate these features and to prove the capacity of our source for applications, we measure the X-ray magnetic circular dichroism (XMCD) effect of nickel at the M 2,3 absorption edge around 67 eV. There results open up the way towards femtosecond time-resolved experiments using high harmonics exploiting the powerful element-sensitive XMCD effect and resolving the ultrafast magnetization dynamics of individual components in complex materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.