—Spurrite-merwinite marbles on the right bank of the Kochumdek River in the Podkamennaya Tunguska basin formed along the top margin of a flood basalt intrusion (Kuzmovka complex) from a marly limestone protolith of the Rhuddanian Lower Kochumdek Subformation, at a pressure of ~200 bars. The contact metamorphic aureole comprises four zones of successively decreasing temperatures marked by the respective mineral assemblages: T ≥ 900 °C (merwinite, spurrite and gehlenite (±rankinite, bredigite); T ≥ 750 °C (spurrite); T ≥ 700 °C (tilleyite, wollastonite, and melilite (Gehl<50)); and ~500–550 °C (diopside, amphibole, and grossular). Very high temperatures at the contact (Tcont > 2/3 Tmelt) result from magma flow along a conduit. The temperature profiles for the Kochumdek metamorphic complex show good fit between measured and geothermometer-derived values at a magma temperature of 1200 °C, an intrusion thickness of ≥ 40 m, a heating time of six months, and a magma flow lifespan within one month. Stagnant magma in a conduit of any thickness cools down and crystallizes rapidly and fails to heat up sediments to the temperatures required for spurrite–merwinite metamorphism (above 790 °C).
The Late Paleozoic and Mesozoic history of high-latitude petroleum and coal basins is investigated and compared with the history of plume magmatism in the same areas. The sedimentation rates in all discussed cases are proven to be the fastest (more than 100 m per 1 Myr) during rifting events. Other peaks of rapid deposition may be associated with collisional mountain growth and/or climate change.
Results of modeling of the formation of the Vilyui sedimentary basin are presented. We combine backstripping reconstructions of sedimentation and thermal regime during the subsidence with a numerical simulation based on the deformable solid mechanics. Lithological data and stratigraphic sections were used to “strip” the sedimentary beds successively and calculate the depth of the stratigraphic units during the sedimentation. It is the first time that the evolution of sedimentation which is nonuniform over the basin area has been analyzed for the Vilyui basin. The rift origin of the basin is proven. We estimate the spatial distribution of the parameters of crustal and mantle-lithosphere extension as well as expansion due to dike intrusion. According to the reconstructions, the type of subsidence curves for the sedimentary rocks of the basin depends on the tectonic regime of sedimentation in individual basins. The backstripping analysis revealed two stages of extension (sediments 4–5 km thick) and a foreland stage (sediments > 2 km thick). With the two-layered lithosphere model, we conclude that the subcrustal layer underwent predominant extension (by a factor of 1.2–2.0 vs. 1.1–1.4 in the crust). The goal of numerical experiments is to demonstrate that deep troughs can form in the continental crust under its finite extension. Unlike the oceanic rifting models, this modeling shows no complete destruction or rupture of the continental crust during the extension. The 2D numerical simulation shows the possibility of considerable basement subsidence near the central axis and explains why mafic dikes are concentrated on the basin periphery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.