At the Angara-5-1 facility investigation was carried out which studied the interaction of plasma flows and the magnetic field. They are created by the current implosion of cylindrical nested wire arrays, the inner and outer array of which are composed from thin wires or dielectric fibers. It has been shown experimentally that at the plasma formation stage it is possible to realize various modes of interaction between plasma flows and the magnetic field of the discharge current inside the nested array. A mechanism is proposed for the interaction of plasma flows of the outer array with the magnetic field and the current-carrying plasma of the inner array. The stability of the plasma compression of the inner array at the final stage of its compression depends on the nature of this interaction. Obtained experimental data on the dynamics of interaction of plasma flows with the magnetic field in the gap between arrays are compared with the results of 2D-simulation of the implosion of nested arrays according to the RMHD MARPLE code. It is experimentally and theoretically confirmed that when a nested array is imploded with certain parameters around the inner array, a plasma quasi-closed shell is formed in the azimuthal direction.
The results of experiments on the study of plasma compression of nested wire arrays of mixed composition and the generation of powerful pulses of soft X-ray radiation (SXR), carried out on a powerful electrophysical facility Angara-5-1 at a current level of up to 3 MA, are presented. Based on the latest experimental data on the intensity of plasma formation of various substances m& (in μg/(cm2×ns)) [1] and on the features of the dynamics of plasma compression in nested arrays [2], a nested wire array design has been developed which makes it possible to obtain a high peak SXR power in comparison with the known designs of single and nested tungsten wire arrays. During the implosion of nested arrays of mixed composition, consisting of plastic fibers and tungsten wires, shorter and more powerful SXR pulses were obtained with a maximum peak power PSXRmax~10 TW with a FWHM duration of ~5 ns compared to the parameters of SXR pulses upon compression of single tungsten arrays: PSXRmax~5 TW and FWHM~10 ns. Thus, under the conditions of our experiments, we have shown the possibility of a twofold increase in the peak SXR power during compression of nested arrays by optimizing their design.
Dynamics and spectral transmission of Al plasma produced by extreme ultraviolet (EUV) irradiation of 0.75-μm thick Al foil is investigated. The EUV radiation with the peak power density in the range of 0.19–0.54 TW/cm2 is provided by Z-pinch formed by W multiwire array implosion in the Angara-5-1 facility. Geometry of the experiment ensures that there are no plasma fluxes from the pinch toward the Al foil and plasma. The same EUV source is used as a back illuminator for obtaining the absorption spectrum of Al plasma in the wavelength range of 5–24 nm. It comprises absorption lines of ions Al4+, Al5+, Al6+, Al7+. Analysis of relative intensities of the lines shows that those ions are formed in dense Al plasma with a temperature of ∼20 eV. Dynamics of Al plasma has been investigated with transverse laser probing. We have also performed radiation-gas-dynamics simulations of plasma dynamics affected by external radiation, which includes self-consistent radiation transport in a plasma shell. The simulations show good agreement with an experimental absorption spectrum and with experimental data concerning plasma dynamics, as well as with the analysis of line absorption spectrum. This confirms the correctness of the physical model underlying these simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.