As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and minimize the undesirable effects of expected increases in tree mortality. We discuss four types of forest and disease management tactics -monitoring, forecasting, planning and mitigation -and provide case studies of yellow-cedar decline and sudden aspen decline to illustrate how forest diseases might be managed in the face of climate change. The uncertainties inherent to climate change effects can be diminished by conducting research, assessing risks, and linking results to forest policy, planning and decision making.
Dothistroma needle blight (DNB) is one of the most important diseases of pine. Although its notoriety stems from Southern Hemisphere epidemics in Pinus radiata plantations, the disease has increased in prevalence and severity in areas of the Northern Hemisphere, including Europe, during the last two decades. This increase has largely been attributed to expanded planting of susceptible hosts, anthropogenic dispersal of the causative pathogens and changes in climate conducive to disease development. The last comprehensive review of DNB was published in 2004, with updates on geographic distribution and host species in 2009. Importantly, the recognition that two species, Dothistroma septosporum and D. pini, cause DNB emerged only relatively recently in 2004. These two species are morphologically very similar, and DNA-based techniques are needed to distinguish between them. Consequently, many records of host species affected or geographic location of DNB prior to 2004 are inconclusive or even misleading. The objectives of this review were (i) to provide a new database in which detailed records of DNB from 62 countries are collated; (ii) to chart the current global distribution of D. septosporum and D. pini; (iii) to list all known host species and to consider their susceptibility globally; (iv) to collate Drenkhan et al. 410 |
Dothistroma septosporum and D. pini are the two causal agents of Dothistroma needle blight of Pinus spp. in natural forests and plantations. Degenerate primers amplified portions of mating type genes (MAT1-1-1 and MAT1-2) and chromosome walking was applied to obtain the full-length genes in both species. The mating-type-specific primers designed in this study could distinguish between the morphologically similar D. pini and D. septosporum and between the different mating types of these species. Screening of isolates from global collections of D. septosporum showed that only MAT2 isolates are present in Australian and New Zealand collections, where only the asexual form of the fungus has been found. In contrast, both mating types of D. septosporum were present in collections from Canada and Europe, where the sexual state is known. Intriguingly, collections from South Africa and the United Kingdom, where the sexual state of the fungus is unknown, included both mating types. In D. pini, for which no teleomorph is known, both mating types were present in collections from the United States. These results provided new insights into the biology and global distribution of two of the world's most important pine pathogens and should facilitate management of the diseases caused by these fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.