YBa2Cu3O
(YBCO) films were fabricated by magnetron sputtering with modification of the substrate surface by preliminary topology masks. Formation features of Josephson junctions on bicrystal Zr1−xYxO2 (YSZ) substrates have been considered. The structural and electrical properties of such junctions were investigated. As a result, the presented technology allows us to fabricate YBCO structures on YSZ substrates with a buffer cerium dioxide (CeO2) layer where YBCO film sputtering is the final stage of structure formation. In particular, long Josephson junctions with good characteristics have been fabricated by this technology and measured, allowing us to achieve critical currents of 80 mA for 150 um junctions.
We have developed and realized a novel multichroic seashell antenna with internal bandpass filters by resonant slots and cold-electron bolometers (CEB). Slots and CEBs are connected by coplanar waveguides (CPW) instead of microstrip lines to realize the most reliable single-layer technology. The internal resonance is organized by a series resonance of slots with CPW and capacitances of superconductor/insulator/normal (SIN) tunnel junctions. In contrast, a conventional multichroic pixel consists of a wideband sinuous antenna coupled to TES detectors by long microstrip lines with overlap and external on-chip filters for different frequency bands. A common problem with a conventional multichroic pixel is that the beam width is frequency dependent for different frequency bands. Besides that, this system with external filters is quite large and includes long microstrip lines with unavoidable overlap and rater high losses. The multichroic seashell antenna with internal resonances avoids all these problems. The main advantage of this antenna is an opportunity to tune separate pairs of phased slots for each frequency band independently. We used pairs of λ/2 slots for 75 and 105 GHz, connected by CPW to CEBs. The connection of CPW to slots was shifted closer to the end of slots for proper RF matching. Each CEB included two SIN junctions and an absorber. SIN junctions had capacitances of 77 and 67 fF. Wave impedance of the antenna was near 50 Ohm and resistance of the absorber was matched to this value. RF testing was done at 314 mK irradiating this chip by frequency sweep of a generator from 78–118 GHz. The response curves have shown clear resonances around 75 and 105 GHz with a quality factor around 5. These experiments confirmed that the seashell antenna with the internal filters by resonant slots and CEBs could effectively be used for creating multiband elements.
The current-voltage characteristics and critical current versus magnetic field dependence of long 24 [001]-tilt YBa 2 Cu 3 O 7Àd bicrystal grain-boundary junctions are studied both experimentally and theoretically. For the opposite magnetic field directions, the flux-flow steps with significantly different height and slope are observed. It is demonstrated that the most probable reason of this discrepancy is recently predicted asymmetry of spatial bias current distribution due to crystallographic anisotropy of bicrystal substrates [
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.