SmB6 is predicted to be the first member of the intersection of topological insulators and Kondo insulators, strongly correlated materials in which the Fermi level lies in the gap of a many-body resonance that forms by hybridization between localized and itinerant states. While robust, surface-only conductivity at low temperature and the observation of surface states at the expected high symmetry points appear to confirm this prediction, we find both surface states at the (100) surface to be topologically trivial. We find the state to appear Rashba split and explain the prominent state by a surface shift of the many-body resonance. We propose that the latter mechanism, which applies to several crystal terminations, can explain the unusual surface conductivity. While additional, as yet unobserved topological surface states cannot be excluded, our results show that a firm connection between the two material classes is still outstanding.
Resonant magnetic excitations are recognised as hallmarks of unconventional superconductivity in copper oxides, iron pnictides and heavy-fermion compounds. model calculations have related these modes to the microscopic properties of the pair wave function, but the mechanisms of their formation are still debated. Here we report the discovery of a similar resonant mode in the non-superconducting antiferromagnetic heavy-fermion metal CeB 6 . unlike conventional magnons, the mode is non-dispersive and is sharply peaked around a wave vector separate from those characterising the antiferromagnetic order. It is likely associated with a co-existing order parameter of the unusual antiferro-quadrupolar phase of CeB 6 , which has long remained hidden to neutron-scattering probes. The mode energy increases continuously below the onset temperature for antiferromagnetism, in parallel to the opening of a nearly isotropic spin gap throughout the Brillouin zone. These attributes are similar to those of the resonant modes in unconventional superconductors. This unexpected commonality between the two disparate ground states indicates the dominance of itinerant spin dynamics in the ordered lowtemperature phases of CeB 6 and throws new light on the interplay between antiferromagnetism, superconductivity and 'hidden' order parameters in correlated-electron materials.
Heavy-fermion metals exhibit a plethora of low-temperature ordering phenomena . Among these are the so-called hidden-order phases that, in contrast to conventional magnetic order, are invisible to standard neutron diffraction experiments. One of the structurally most simple hidden-order compounds, CeB6, has been intensively studied for an elusive phase that was attributed to the antiferroquadrupolar ordering of cerium-4f moments . As the ground state of CeB6 is characterized by a more conventional antiferromagnetic (AFM) order , the low-temperature physics of this system has generally been assumed to be governed solely by AFM interactions between the dipolar and multipolar Ce moments . Here we overturn this established picture by observing an intense ferromagnetic (FM) low-energy collective mode that dominates the magnetic excitation spectrum of CeB6. Inelastic neutron-scattering data reveal that the intensity of this FM excitation significantly exceeds that of conventional spin-wave magnons emanating from the AFM wavevectors, thus placing CeB6 much closer to a FM instability than previously anticipated. This propensity for ferromagnetism may account for much of the unexplained behaviour of CeB6, and should lead to a re-examination of existing theories that have so far largely neglected the role of FM interactions.
Some heavy fermion materials show so-called hidden-order phases which are invisible to many characterization techniques and whose microscopic origin remained controversial for decades. Among such hidden-order compounds, CeB6 is of model character due to its simple electronic configuration and crystal structure. Apart from more conventional antiferromagnetism, it shows an elusive phase at low temperatures, which is commonly associated with multipolar order. Here we show that this phase roots in a Fermi surface instability. This conclusion is based on a full 3D tomographic sampling of the electronic structure by angle-resolved photoemission and comparison with inelastic neutron scattering data. The hidden order is mediated by itinerant electrons. Our measurements will serve as a paradigm for the investigation of hidden-order phases in f-electron systems, but also generally for situations where the itinerant electrons drive orbital or spin order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.