HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
We investigate generation of exchange magnons by ultrashort, picosecond acoustic pulses propagating through ferromagnetic thin films. Using the Landau-Lifshitz-Gilbert equations we derive the dispersion relation for exchange magnons for an external magnetic field tilted with respect to the film normal. Decomposing the solution in a series of standing spin wave modes, we derive a system of ordinary differential equations and driven harmonic oscillator equations describing the dynamics of individual magnon mode. The external magnetoelastic driving force is given by the time-dependent spatial Fourier components of acoustic strain pulses inside the layer. Dependencies of the magnon excitation efficiencies on the duration of the acoustic pulses and the external magnetic field highlight the role of acoustic bandwidth and phonon-magnon phase matching. Our simulations for ferromagnetic nickel evidence the possibility of ultrafast magneto-acoustic excitation of exchange magnons within the bandwidth of acoustic pulses in thin samples under conditions readily obtained in femtosecond pump-probe experiments.
Monolayer composite, multilayer composite-composite and multilayer composite-semiconductor films were investigated. Dependencies of the internal exchange fields on magnetic metal alloy concentration in nanostructured single and multilayer films at room and liquid nitrogen temperatures were obtained. The calculation is made on the basis of the experimental data and the relationship of the exchange interaction and the broadening of the FMR line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.