The dissociation of OCS has been investigated subsequent to excitation at 248 nm. Speed distributions, speed dependent translational anisotropy parameters, angular momentum alignment, and orientation are reported for the channel leading to S((1)D(2)). In agreement with previous experiments, two product speed regimes have been identified, correlating with differing degrees of rotational excitation in the CO coproducts. The velocity dependence of the translational anisotropy is also shown to be in agreement with previous work. However, contrary to previous interpretations, the speed dependence is shown to primarily reflect the effects of nonaxial recoil and to be consistent with predominant excitation to the 2 (1)A(') electronic state. It is proposed that the associated electronic transition moment is polarized in the molecular plane, at an angle greater than approximately 60 degrees to the initial linear OCS axis. The atomic angular momentum polarization data are interpreted in terms of a simple long-range interaction model to help identify likely surfaces populated during dissociation. Although the model neglects coherence between surfaces, the polarization data are shown to be consistent with the proposed dissociation mechanisms for the two product speed regimes. Large values for the low and high rank in-plane orientation parameters are reported. These are believed to be the first example of a polyatomic system where these effects are found to be of the same order of magnitude as the angular momentum alignment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.