Inelastic scattering is a fundamental collisional process that plays an important role in many areas of chemistry, and its detailed study can provide valuable insight into more complex chemical systems. Here, we report the measurement of differential cross-sections for the rotationally inelastic scattering of NO(X2Π1/2, v=0, j=0.5, f) by Ar at a collision energy of 530 cm(-1) in unprecedented detail, with full Λ-doublet (hence total NO parity) resolution in both the initial and final rotational quantum states. The observed differential cross-sections depend sensitively on the change in total NO parity on collision. Differential cross-sections for total parity-conserving and changing collisions have distinct, novel quantum-mechanical interference structures, reflecting different sensitivities to specific homonuclear and heteronuclear terms in the interaction potential. The experimental data agree remarkably well with rigorous quantum-mechanical scattering calculations, and reveal the role played by total parity in acting as a potential energy landscape filter.
This paper concerns the semiclassical description, calculation and measurement of angular momentum polarization in the products of elementary gas-phase bimolecular reactions. A unified, semiclassical treatment of the centre-of-mass correlated (k,k′,j′) angular distribution involving the reagent and product relative velocity and the product angular momentum vectors is described, and is related to other methodologies already existing in the literature. Explicit expressions are provided enabling experimentalists to extract rotational polarization information from crossed-molecular beam and photon-initiated reaction studies, under a variety of experimental conditions. Furthermore, the strategy developed is well suited to the theoretical calculation of reaction product polarization, in particular, using classical trajectory methods. An illustrative example of such a calculation is presented, and the centre-of-mass polarization data provided is used to simulate the laboratory frame rotational moments that can be determined experimentally using 1+1 Doppler-resolved polarized Laser product probing techniques.
Rotational angular momentum alignment effects in the rotationally inelastic collisions of NO(X) with Ar have been investigated at a collision energy of 66 meV by means of hexapole electric field initial state selection coupled with velocity-map ion imaging final state detection. The fully quantum state resolved second rank renormalized polarization dependent differential cross sections determined experimentally are reported for a selection of spin-orbit conserving and changing transitions for the first time. The results are compared with the findings of previous theoretical investigations, and in particular with the results of exact quantum mechanical scattering calculations. The agreement between experiment and theory is generally found to be good throughout the entire scattering angle range. The results reveal that the hard shell nature of the interaction potential is predominantly responsible for the rotational alignment of the NO(X) upon collision with Ar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.