Rotational angular momentum alignment effects in the rotationally inelastic collisions of NO(X) with Ar have been investigated at a collision energy of 66 meV by means of hexapole electric field initial state selection coupled with velocity-map ion imaging final state detection. The fully quantum state resolved second rank renormalized polarization dependent differential cross sections determined experimentally are reported for a selection of spin-orbit conserving and changing transitions for the first time. The results are compared with the findings of previous theoretical investigations, and in particular with the results of exact quantum mechanical scattering calculations. The agreement between experiment and theory is generally found to be good throughout the entire scattering angle range. The results reveal that the hard shell nature of the interaction potential is predominantly responsible for the rotational alignment of the NO(X) upon collision with Ar.
Zeeman quantum beat spectroscopy has been used to measure the 300 K rate constants for the angular momentum depolarization of OH(A (2)Sigma(+)) in the presence of Ar. We show that the beat amplitude at short times, in the absence of collisions, is well described by previously developed line strength theory for (1+1) laser induced fluorescence. The subsequent pressure dependent decay of the beat amplitude is used to extract depolarization rate constants and estimates of collisional depolarization cross sections. Depolarization accompanies both inelastic collisions, giving rise to rotational energy transfer, and elastic collisions, which change m(j) but conserve j. Previous experimental studies, as well as classical theory, suggest that elastic scattering contributes around 20% to the observed total depolarization rate at low j. Simulation of the experimental beat amplitudes, using theoretical calculations presented in the preceding paper, reveals that depolarization of OH(A) by Ar has a rate constant comparable to, if not larger than, that for energy transfer. This is consistent with a significant tilting or realignment of j(') away from j on collision. The experimental data are used to provide a detailed test of quantum mechanical and quasiclassical trajectory scattering calculations performed on a recently developed ab initio potential energy surface of Kłos et al. [J. Chem. Phys. 129, 054301 (2008)]. The calculations and simulations account well for the observed cross sections at high N, but underestimate the experimental results by between 10% and 20% at low N, possibly due to remaining inaccuracies in the potential energy surface or perhaps to limitations in the dynamical approximations made, particularly the freezing of the OH(A) bond.
Fully Λ-doublet resolved state-to-state differential cross-sections (DCSs) for the collisions of the open-shell NO(X, (2)Π(1/2), ν = 0, j = 0.5) molecule with Ar at a collision energy of 530 cm(-1) are presented. Initial state selection of NO(X, (2)Π(1/2), j = 0.5, f) was performed using a hexapole so that the (low field seeking) parity of ε = -1, corresponding to the f component of the Λ-doublet, could be selected uniquely. Although the Λ-doublet levels lie very close in energy to one another and differ only in their relative parities, they exhibit strikingly different DCSs. Both spin-orbit conserving and spin-orbit changing collisions have been studied, and the previously unobserved structures in the fully quantum state-to-state resolved DCSs are shown to depend sensitively on the change in parity of the wavefunction of the NO molecule on collision. In all cases, the experimental data are shown to be in excellent agreement with rigorous quantum mechanical scattering calculations.
Classical and quantum mechanical expressions for the j-j(') vector correlation (also referred to as the rotational tilt) are presented for the situation in which the initial and final relative velocity directions are unresolved. The quantum mechanical expressions are compared with previous descriptions in the literature. It is shown that in the case of (2S+1)Sigma radicals in collision with closed shell species, a tensor opacity formalism can be employed in quasiclassical trajectory calculations to provide classical estimates of both open shell spin-rotation state and nuclear hyperfine state changing (or conserving) cross sections. Polarization parameters are also obtained from the same formalism. The method is applied to calculations on the OH(A (2)Sigma(+))-Ar system using a recently developed potential energy surface. The results of both the closed and open shell quasiclassical trajectory calculations are found to compare favorably with those from close-coupled closed and open shell quantum mechanical scattering calculations. The accompanying paper provides an experimental test of these calculations and of the potential energy surface they employ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.