In this article the procedure and method for the ice accretion prediction for different airfoils using artificial neural networks (ANNs) are discussed. A dataset for the neural network is based on the numerical experiment results—obtained through iceFoam solver—with four airfoils (NACA0012, General Aviation, Business Jet, and Commercial Transport). Input data for neural networks include airfoil and ice geometries, transformed into a set of parameters using a parabolic coordinate system and Fourier series expansion. Besides input features include physical parameters of flow (velocity, temperature, droplets diameter, liquid water content, time of ice accretion) and angle of attack. The novelty of this work is in that the neural network dataset includes various airfoils and the data augmentation technique being a combination of all time slices. Several artificial neural networks (ANNs), fully connected networks (FCNNs), and convolutional networks (CNNs) were trained to predict airfoil ice shapes. Two different loss functions were considered. In order to improve performance of models, batch normalization and dropout layers were used. The most accurate results of ice shape prediction were obtained using CNN and FCNN that applied batch normalization and dropout layers to output neurons of each layer.
Квазигазодинамический алгоритм численного решения двухслойных уравнений мелкой воды Москва-2016 Елизарова Т.Г., Иванов А.В. Квазигазодинамический алгоритм численного решения двухслойных уравнений мелкой воды Аннотация Построен регуляризованный вид системы уравнений двухслойной мелкой воды для плоских одномерных течений с использованием квазигазодинамического подхода. Для численного решения полученных уравнений выписана условно-устойчивая конечно-разностная схема и проведено ее тестирование на примере известных одномерных течений. Для сравнения приведена регуляризованная система уравнений, построенная на основе квазигидродинамического подхода. Работа выполнена при поддержке гранта РФФИ 16-01-00048а. Ключевые слова: уравнения двухслойной мелкой воды, квазигазодинамический подход, метод конечного объема, центрально-разностная схема, одномерные течения Tatiana Gennadyevna Elizarova, Aleksander Vladimirovich Ivanov Quasi-gasdynamic algorithm for numerical solution of two-layer shallow water equations
This paper presents a new method for the numerical simulation of two-phase incompressible immiscible flows. The methodology is based on the hydrodynamic equations regularization method using the quasi-hydrodynamic approach. Two systems of regularized equations are developed, which differ in terms of velocity regularization. The comparison of the described equations systems and the approbation of the numerical model on two numerical tests are given: dam break problem with the bottom step, for which the experimental data are described (Koshizuka’s experiment), and the cubic drop evolution problem. The latter problem is a model one with artificially specified parameters that demonstrates the effects of surface tension. A numerical model of two-phase flows is implemented in the open-source platform OpenFOAM using the finite volume method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.