This study was the first to compare the neuroprotective activity of Cerebrolysin®, Actovegin® and Cortexin® in rodent models of acute and chronic brain ischemia. The neuroprotective action was evaluated in animals with acute (middle cerebral artery occlusion) or chronic (common carotid artery stenosis) brain ischemia models in male rats. Cortexin® (1 or 3 mg/kg/day), Cerebrolysin® (538 or 1614 mg/kg/day) and Actovegin® (200 mg/kg/day) were administered for 10 days. To assess the neurological and motor impairments, open field test, adhesive removal test, rotarod performance test and Morris water maze test were performed. Brain damage was assessed macro- and microscopically, and antioxidant system activity was measured in brain homogenates. In separate experiments in vitro binding of Cortexin® to a wide panel of receptors was assessed, and blood-brain barrier permeability of Cortexin® was assessed in mice in vivo. Cortexin® or Cerebrolysin® and, to a lesser extent, Actovegin® improved the recovery of neurological functions, reduced the severity of sensorimotor and cognitive impairments in rats. Cortexin® reduced the size of necrosis of brain tissue in acute ischemia, improved functioning of the antioxidant system and prevented the development of severe neurodegenerative changes in chronic ischemia model. Radioactively labeled Cortexin® crossed the blood-brain barrier in mice in vivo with concentrations equal to 6–8% of concentrations found in whole blood. During in vitro binding assay Cortexin® (10 μg/ml) demonstrated high or moderate binding to AMPA-receptors (80.1%), kainate receptors (73.5%), mGluR1 (49.0%), GABAA1 (44.0%) and mGluR5 (39.7%), which means that effects observed in vivo could be related on the glutamatergic and GABAergic actions of Cortexin®. Thus, Cortexin, 1 or 3 mg/kg, or Cerebrolysin®, 538 or 1614 mg/kg, were effective in models acute and chronic brain ischemia in rats. Cortexin® contains compounds acting on AMPA, kainate, mGluR1, GABAA1 and mGluR5 receptors in vitro, and readily crosses the blood-brain barrier in mice.
Introduction: Over the past few years, the incidence of retinal ischemic disorders has been increasing, due to a rising prevalence of such socially burdensome diseases as diabetes and hypertension, which ultimately lead to ocular vascular pathology. The identification of new treatment options that would prevent retinal neuron death is a crucial task of modern pharmacology.
Materials and methods: The research was carried out on male Wistar rats. Retinopathy was modeled by inducing a 30-min ischemic episode, with a 72-hour period of reperfusion and subsequent administration of Retinalamin and Emoxypine for 10 days. The effectiveness of the drugs was evaluated by electroretinographic, ophthalmoscopic and morphological assessments.
Results and discussion: On Day 14 of the experiment, a dose-dependent preservation of the electroretinogram b-wave/a-wave amplitude ratio was observed in the animals treated with Retinalamin depending on a dose (1.39±0.06, 1.46±0.03 and 1.49±0.04 in low (0.214 mg/kg), medium (0.428 mg/kg) and high (0.857 mg/kg) Retinalamin dose groups, respectively). The ophthalmoscopic picture of the fundus oculi also improved following the treatment with Retinalamin (1.42, 1.69 and 1.90 times lower ophthalmoscopic scores compared to placebo-treated animals in low, medium and high dose groups, respectively). The morphologic “coefficient of change” applied to ganglion cell layer was 2.2, 1.7 and 1.6 points in low, medium and high dose Retinalamin groups, respectively. These results are significantly different from both intact and placebo group (p<0.05). Based on the aforementioned experimental findings, we conclude that Retinalamin has a retinoprotective effect and is superior to the drug of comparison (Emoxypine).
Conclusion: The greatest neuroprotective effects were shown in the groups receiving Retinalamin. In these groups, the ERG b-wave/a-wave amplitude ratio was preserved, the ophthalmoscopic picture was less pathologic and retinal morphology features were close to those of the intact retina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.