A classical thermometer typically works by exchanging energy with the system being measured until it comes to equilibrium, at which point the readout is related to the final energy state of the thermometer. A recent paper noted that with a quantum thermometer consisting of a single spin/qubit, temperature discrimination is better achieved at finite times rather than once equilibration is essentially complete. Furthermore, preparing a qubit thermometer in a state with quantum coherence instead of an incoherent one improves its sensitivity to temperature differences. Implementing a recent proposal for efficiently emulating an arbitrary quantum channel, we use the quantum polarisation state of individual photons as models of “single-qubit thermometers” which evolve for a certain time in contact with a thermal bath. We investigate the optimal thermometer states for temperature discrimination, and the optimal interaction times, confirming that there is a broad regime where quantum coherence provides a significant improvement. We also discuss the more practical question of thermometers composed of a finite number of spins/qubits (greater than one), and characterize the performance of an adaptive protocol for making optimal use of all the qubits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.