Every imaging system has a resolution limit, typically defined by Rayleigh's criterion. Given a fixed number of photons, the amount of information one can gain from an image about the separation between two sources falls to zero as the separation drops below this limit, an effect dubbed "Rayleigh's curse." Recently, in a quantum-information-inspired proposal, Tsang and co-workers found that there is, in principle, infinitely more information present in the full electromagnetic field in the image plane than in the intensity alone, and suggested methods for extracting this information and beating the Rayleigh limit. In this Letter, we experimentally demonstrate a simple scheme that captures most of this information, and show that it has a greatly improved ability to estimate the distance between a pair of closely separated sources, achieving near-quantum-limited performance and immunity to Rayleigh's curse.
The quantum Cramér-Rao bound is a cornerstone of modern quantum metrology, as it provides the ultimate precision in parameter estimation. In the multiparameter scenario, this bound becomes a matrix inequality, which can be cast to a scalar form with a properly chosen weight matrix. Multiparameter estimation thus elicits tradeoffs in the precision with which each parameter can be estimated. We show that, if the information is encoded in a unitary transformation, we can naturally choose the weight matrix as the metric tensor linked to the geometry of the underlying algebra 𝔰𝔲(𝑛). This ensures an intrinsic bound that is independent of the choice of parametrization.
As the separation between two emitters is decreased below the Rayleigh limit, the information that can be gained about their separation using traditional imaging techniques, photon counting in the image plane, reduces to nil. Assuming the sources are of equal intensity, Rayleigh's 'curse' can be alleviated by making phase-sensitive measurements in the image plane. However, with unequal and unknown intensities the curse returns regardless of the measurement, though the ideal scheme would still outperform image plane counting (IPC), i.e. recording intensities on a screen. We analyze the limits of the super-resolved position localization by inversion of coherence along an edge (SPLICE) phase measurement scheme as the intensity imbalance between the emitters grows. We find that SPLICE still outperforms IPC for moderately disparate intensities. For larger intensity imbalances we propose a hybrid of IPC and SPLICE, which we call 'adapted SPLICE', requiring only simple modifications. Using Monte Carlo simulation, we identify regions (emitter brightness, separation, intensity imbalance) where it is advantageous to use SPLICE over IPC, and when to switch to the adapted SPLICE measurement. We find that adapted SPLICE can outperform IPC for large intensity imbalances, e.g. 10 000:1, with the advantage growing with greater disparity between the two intensities. Finally, we also propose additional phase measurements for estimating the statistical moments of more complex source distributions. Our results are promising for implementing phase measurements in sub-Rayleigh imaging tasks such as exoplanet detection.
A classical thermometer typically works by exchanging energy with the system being measured until it comes to equilibrium, at which point the readout is related to the final energy state of the thermometer. A recent paper noted that with a quantum thermometer consisting of a single spin/qubit, temperature discrimination is better achieved at finite times rather than once equilibration is essentially complete. Furthermore, preparing a qubit thermometer in a state with quantum coherence instead of an incoherent one improves its sensitivity to temperature differences. Implementing a recent proposal for efficiently emulating an arbitrary quantum channel, we use the quantum polarisation state of individual photons as models of “single-qubit thermometers” which evolve for a certain time in contact with a thermal bath. We investigate the optimal thermometer states for temperature discrimination, and the optimal interaction times, confirming that there is a broad regime where quantum coherence provides a significant improvement. We also discuss the more practical question of thermometers composed of a finite number of spins/qubits (greater than one), and characterize the performance of an adaptive protocol for making optimal use of all the qubits.
A fully homomorphic encryption system hides data from unauthorized parties, while still allowing them to perform computations on the encrypted data. Aside from the straightforward benefit of allowing users to delegate computations to a more powerful server without revealing their inputs, a fully homomorphic cryptosystem can be used as a building block in the construction of a number of cryptographic functionalities. Designing such a scheme remained an open problem until 2009, decades after the idea was first conceived, and the past few years have seen the generalization of this functionality to the world of quantum machines. Quantum schemes prior to the one implemented here were able to replicate some features in particular use-cases often associated with homomorphic encryption but lacked other crucial properties, for example, relying on continual interaction to perform a computation or leaking information about the encrypted data. We present the first experimental realisation of a quantum fully homomorphic encryption scheme. We further present a toy two-party secure computation task enabled by our scheme. Finally, as part of our implementation, we also demonstrate a post-selective two-qubit linear optical controlled-phase gate with a much higher post-selection success probability (1/2) when compared to alternate implementations, e.g. with post-selective controlled-Z or controlled-X gates (1/9).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.