The processes of cluster formation in liquid alcohols, water, methanol, n-hexanol, and n-hexane have been investigated by the method of flicker-noise spectroscopy. Two types of clusters -clusters with a close-packed structure and clusters with a loose structure -have been detected. The energy of formation of different clusters in methanol and n-hexane ranges, respectively, from −250 to +250 J/mole and from −50 to +50 J/mole. The smallest clusters of methanol, n-hexanol, water, and n-hexane consist, respectively, of six, two, eleven, and two molecules, and their largest clusters represent oscillators consisting, respectively, of 50,400, 17,200, 93,500, and 33,150 molecules at 274 K. In methanol at 271 K, more than 44 types of clusters consisting of 6, 97, 152, 219, 297, 492, 1029, 1368, 1560, etc. molecules were detected. In n-hexanol at 273 K, 57 types of clusters were detected. Models of small clusters are proposed. In water, the content of close-packed clusters is maximum at 277 K. The energy of formation/decomposition of small clusters in water ranges from −0.4 to +0.4 kJ/mole and increases with increase in the water temperature. The hysteresis of transformation of the (H 2 O) 280 cluster in the process of heating and cooling of water in the temperature range 273-280 K was detected. Series of energy spectra of clusters in liquids at different temperatures are presented and discussed.