A cDNA corresponding to a 10-kD protein, designated extracellular protein 2 (EP2), that is secreted by embryogenic cell cultures of carrot was obtained by expression screening. The derived protein sequence and antisera against heterologous plant lipid transfer proteins identified the EP2 protein as a lipid transfer protein. Protein gel blot analysis showed that the EP2 protein is present in cell walls and conditioned medium of cell cultures. RNA gel blot analysis revealed that the EP2 gene is expressed in embryogenic cell cultures, the shoot apex of seedlings, developing flowers, and maturing seeds. In situ hybridization showed expression of the EP2 gene in protoderm cells of somatic and zygotic embryos and transient expression in epidermis cells of leaf primordia and all flower organs. In the shoot apical meristem, expression is found in the tunica and lateral zone. In maturing seeds, the EP2 gene is expressed in the outer epidermis of the integument, the seed coat, and the pericarp epidermis, as well as transiently in between both mericarps. Based on the extracellular location of the EP2 protein and the expression pattern of the encoding gene, we propose a role for plant lipid transfer proteins in the transport of cutin monomers through the extracellular matrix to sites of cutin synthesis.
At the nonpermissive temperature, somatic embryogenesis of the temperature-sensitive (ts) carrot cell mutant ts11 does not proceed beyond the globular stage. This developmental arrest can be lifted by the addition of proteins secreted by wild-type cells to the culture medium. From this mixture of secreted proteins, a 32-kD glycoprotein, designated extracellular protein 3 (EP3), that allows completion of somatic embryo development in ts11 at the nonpermissive temperature was purified. On the basis of peptide sequences and biochemical characterization, EP3 was identified as a glycosylated acidic endochitinase. The addition of the 32-kD endochitinase to ts11 embryo cultures at the nonpermissive temperature appeared to promote the formation of a correctly formed embryo protoderm. These results imply that a glycosylated acidic endochitinase has an important function in early plant somatic embryo development.
In plants, complete embryos can develop not only from the zygote, but also from somatic cells in tissue culture. How somatic cells undergo the change in fate to become embryogenic is largely unknown. Proteins, secreted into the culture medium such as endochitinases and arabinogalactan proteins (AGPs) are required for somatic embryogenesis. Here we show that carrot (Daucus carota) AGPs can contain glucosamine and N-acetyl-d-glucosaminyl and are sensitive to endochitinase cleavage. To determine the relevance of this observation for embryogenesis, an assay was developed based on the enzymatic removal of the cell wall from cultured cells. The resulting protoplasts had a reduced capacity for somatic embryogenesis, which could be partially restored by adding endochitinases to the protoplasts. AGPs from culture medium or from immature seeds could fully restore or even increase embryogenesis. AGPs pretreated with chitinases were more active than untreated molecules and required an intact carbohydrate constituent for activity. AGPs were only capable of promoting embryogenesis from protoplasts in a short period preceding cell wall reformation. Apart from the increase in embryogenesis, AGPs can reinitiate cell division in a subpopulation of otherwise non-dividing protoplasts. These results show that chitinase-modified AGPs are extracellular matrix molecules able to control or maintain plant cell fate.
To identify genes specifically expressed during early stages of actinorhizal nodule development, a cDNA library made from poly(A) RNA from root nodules of Alnus glutinosa was screened differentially with nodule and root cDNA, respectively. Seven nodule-enhanced and four nodule-specific cDNA clones were isolated. By using in situ hybridization, two of the nodule-specific cDNAs were shown to be expressed at the highest levels in infected cells before the onset of nitrogen fixation; one of them, ag12 (A. glutinosa), was examined in detail. Sequencing showed that ag12 codes for a serine protease of the subtilisin (EC 3.4.21.14) family. Subtilisins previously appeared to be limited to microorganisms. However, subtilisin-like serine proteases have recently been found in archaebacteria, fungi, and yeasts as well as in mammals; a plant subtilisin has also been sequenced. In yeast and mammals, subtilases are responsible for processing peptide hormones. A homolog of ag12, ara12, was identified in Arabidopsis; it was expressed in all organs, and its expression levels were highest during silique development. Hence, our study shows that subtilases are also involved in both symbiotic and nonsymbiotic processes in plant development.
A pea cDNA clone homologous to the soybean early nodulin clone pGmENOD2 that most probably encodes a cell wall protein was isolated. The derived amino acid sequence of the pea ENOD2 protein shows that it contains the same repeating pentapeptides, ProProHisGluLys and ProProGluTyrGln, as the soybean ENOD2 protein. By in situ hybridization the expression of the ENOD2 gene was shown to occur only in the inner cortex of the indeterminate pea nodule. The transcription of the pea ENOD2 gene starts when the inner cortical cells develop from the nodule meristem. In the determinate soybean nodule the ENOD2 gene is expressed in the inner cortex as well as in cells surrounding the vascular bundle that connects the nodule with the root central cylinder. The term ‘nodule inner cortex’ is misleading, as there is no direct homology with the root inner cortex. Therefore, we propose to consider this tissue as nodule parenchyma. A possible role of ENOD2 in a major function of the nodule parenchyma, namely creating an oxygen barrier for the central tissue with the Rhizobium containing cells, is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.