Modeling the transport of volcanic ash and gases released during volcanic eruptions is crucially dependent on knowledge of the source term of the eruption, that is, the source strength as a function of altitude and time. For the first time, an inversion method is used to estimate the source terms of both volcanic sulfur dioxide (SO 2 ) and ash. It was applied to the explosive volcanic eruption of Grímsvötn, Iceland, in May 2011. The method uses input from the particle dispersion model, FLEXPART (flexible particle dispersion model), a priori source estimates, and satellite observations of SO 2 or ash total columns from Infrared Atmospheric Sounding Interferometer to separately obtain the source terms for volcanic SO 2 and fine ash. The estimated source terms show that SO 2 was emitted mostly to high altitudes (5 to 13 km) during about 18 h (22 May, 00-18 UTC) while fine ash was emitted mostly to low altitudes (below 4 km) during roughly 24 h (22 May 06 UTC to 23 May 06 UTC). FLEXPART simulations using the estimated source terms show a clear separation of SO 2 (transported mostly northwestward) and the fine ash (transported mostly southeastward). This corresponds well with independent satellite observations and measured aerosol mass concentrations and lidar measurements at surface stations in Scandinavia. Aircraft measurements above Iceland and Germany confirmed that the ash was located in the lower atmosphere. This demonstrates that the inversion method, in this case, is able to distinguish between emission heights of SO 2 and ash and can capture resulting differences in transport patterns.
Because of the potential impact on agriculture and other key human activities, efforts have been dedicated to the local control of precipitation. The most common approach consists of dispersing small particles of dry ice, silver iodide, or other salts in the atmosphere. Here we show, using field experiments conducted under various atmospheric conditions, that laser filaments can induce water condensation and fast droplet growth up to several μm in diameter in the atmosphere as soon as the relative humidity exceeds 70%. We propose that this effect relies mainly on photochemical formation of p.p.m.-range concentrations of hygroscopic HNO3, allowing efficient binary HNO3–H2O condensation in the laser filaments. Thermodynamic, as well as kinetic, numerical modelling based on this scenario semiquantitatively reproduces the experimental results, suggesting that particle stabilization by HNO3 has a substantial role in the laser-induced condensation.
Uncertainty in the physicochemical and optical properties of volcanic ash particles creates errors in the detection and modeling of volcanic ash clouds and in quantification of their potential impacts. In this study, we provide a data set that describes the physicochemical and optical properties of a representative selection of volcanic ash samples from nine different volcanic eruptions covering a wide range of silica contents (50–80 wt % SiO2). We measured and calculated parameters describing the physical (size distribution, complex shape, and dense‐rock equivalent mass density), chemical (bulk and surface composition), and optical (complex refractive index from ultraviolet to near‐infrared wavelengths) properties of the volcanic ash and classified the samples according to their SiO2 and total alkali contents into the common igneous rock types basalt to rhyolite. We found that the mass density ranges between ρ = 2.49 and 2.98 g/cm3 for rhyolitic to basaltic ash types and that the particle shape varies with changing particle size (d < 100 μm). The complex refractive indices in the wavelength range between λ = 300 nm and 1500 nm depend systematically on the composition of the samples. The real part values vary from n = 1.38 to 1.66 depending on ash type and wavelength and the imaginary part values from k = 0.00027 to 0.00268. We place our results into the context of existing data and thus provide a comprehensive data set that can be used for future and historic eruptions, when only basic information about the magma type producing the ash is known.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.