The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical abnormalities (pathophysiology). Thus, further studies need to be done to emphasize this concept.
Excessive concentrations of free radicals in the developing brain may lead to neurons maldevelopment and neurons damage and death. Thyroid hormones (THs) states play an important role in affecting the modulation of oxidative stress and antioxidant defense system. Thus, the objective of this study was to clarify the effect of hypothyroidism and hyperthyroidism in rat dams on the neurons development of different brain regions of their offspring at several postnatal weeks in relation to changes in the oxidative stress and antioxidant defense system. The adult female rats were administered methimazole (MMI) in drinking water (0.02% w/v) from gestation day 1 to lactation day 21 to induce hypothyroidism and exogenous thyroxine (T4) in drinking water (0.002% w/v) beside intragastric incubation of 50--200 T4 μg/kg body weight (b. wt.) to induce hyperthyroidism. In normal female rats, the sera total thyroxine (TT4) and total triiodothyronine (TT3) levels were detectably increased at day 10 post-partum than those at day 10 of pregnancy. Free thyroxine (FT4), free triiodothyronine (FT3), thyrotropin (TSH) and growth hormone (GH) concentrations in normal offspring were elevated at first, second and third postnatal weeks in an age-dependent manner. In hypothyroid group, a marked depression was observed in sera of dam TT3 and TT4 as well as offspring FT3, FT4 and GH, while there was a significant increase in TSH level with the age progress. The reverse pattern to latter state was recorded in hyperthyroid group. Concomitantly, in control offspring, the rate of neuron development in both cerebellar and cerebral cortex was increased in its density and complexity with age progress. This development may depend, largely, on THs state. Both maternal hypothyroidism and hyperthyroidism caused severe growth retardation in neurons of these regions of their offspring from the first to third weeks. Additionally, in normal offspring, seven antioxidant enzymes, four non-enzymatic antioxidants and one oxidative stress marker (lipid peroxidation, LPO) followed a synchronized course of alterations in cerebrum, cerebellum and medulla oblongata. In both thyroid states, the oxidative damage has been demonstrated by the increased LPO and inhibition of enzymatic and non-enzymatic antioxidants in most examined ages and brain regions. These disturbances in the antioxidant defense system led to deterioration in the neuronal maturation and development. In conclusion, it can be suggested that the maldevelopment of neurons and dendrites in different brain regions of offspring of hypothyroid and hyperthyroid mother rat dams may be attributed, at least in part, to the excess oxidative stress and deteriorated antioxidant defense system in such conditions.
Thyroid hormones (THs) play a crucial role in the development and physiological functioning of different body organs especially the brain. Therefore, the objective of this study was to show the histopathological effects of the different thyroid states on some brain regions (cerebrum and cerebellum) and the skeletal features of their newborns during the postnatal development from the 1st to 3rd week. The female white albino rats were allocated into 3 groups as follows: the experimental hypothyroidism group is induced by 0.02% methimazole (MMI) (w/v) in drinking water, while the experimental hyperthyroidism group is performed by exogenous T4 [from 50 to 200microg/kg body weight intragastric administration beside adding 0.002% T4 (w/v) to the drinking water] from the gestation day 1 to lactation day 21 and control group which received tap water. As well, both maternal hypo- and hyperthyroidism caused some malformation and developmental defects in the cerebellar and cerebral cortex of their newborns along the duration of the experiment. These degenerative symptoms became more prominent and widely spread at the 3rd postnatal week. Concomitantly, there were some degeneration, deformation and severe growth retardation in neurons of these regions in both treated groups throughout the experimental period. Moreover, the skeletal features of these newborns were accelerated in hyperthyroid group while these maturations were delayed partially in hypothyroid ones during the examined periods. These alterations, on both treated groups, were age and dose dependent. Thus, further studies need to be done to emphasize this concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.