The global pledge to deliver 'a significant reduction in the current rate of biodiversity loss by 2010' is echoed in a number of regional and national level targets. There is broad consensus, however, that in the absence of conservation action, biodiversity will continue to be lost at a rate unprecedented in the recent era. Remarkably, we lack a basic system to measure progress towards these targets and, in particular, we lack standard measures of biodiversity and procedures to construct and assess summary statistics. Here, we develop a simple classification of biodiversity indicators to assist their development and clarify purpose. We use European birds, as example taxa, to show how robust indicators can be constructed and how they can be interpreted. We have developed statistical methods to calculate supranational, multi-species indices using population data from national annual breeding bird surveys in Europe. Skilled volunteers using standardized field methods undertake data collection where methods and survey designs differ slightly across countries. Survey plots tend to be widely distributed at a national level, covering many bird species and habitats with reasonable representation. National species' indices are calculated using log-linear regression, which allows for plot turnover. Supranational species' indices are constructed by combining the national species' indices weighted by national population sizes of each species. Supranational, multi-species indicators are calculated by averaging the resulting indices. We show that common farmland birds in Europe have declined steeply over the last two decades, whereas woodland birds have not. Evidence elsewhere shows that the main driver of farmland bird declines is increased agricultural intensification. We argue that the farmland bird indicator is a useful surrogate for trends in other elements of biodiversity in this habitat.
We explore population trends of widespread and common woodland birds using data from an extensive European network of ornithologists for the period 1980-2003. We show considerable differences exist in the European trends of species according to the broad habitat they occupy and the degree to which they specialize in habitat use. On average, common forest birds are in shallow decline at a European scale; common forest birds declined by 13%, and common forest specialists by 18%, from 1980 to 2003. In comparison, populations of common specialists of farmland have declined moderately, falling on average by 28% from 1980 to 2003. These patterns contrast with that shown by generalist species whose populations have been roughly stable over the same period, their overall index increasing by 3%. There was some evidence of regional variation in the population trends of these common forest species. The most obvious pattern was the greater stability of population trends in Eastern Europe compared with other regions considered. Among common forest birds, long-distance migrants and residents have on average declined most strongly, whereas shortdistance migrants have been largely stable, or have increased. There was some evidence to suggest that ground-or low-nesting species have declined more strongly on average, as have forest birds with invertebrate diets. Formal analysis of the species trends confirmed the influence of habitat use, habitat specialization and nest-site; the effects of region and migration strategy were less clear-cut. There was also evidence to show that year-to-year variation in individual species trends at a European scale was influenced by cold winter weather in a small number of species. We recommend that the species trend information provided by the new pan-European scheme should be used alongside existing mechanisms to review the conservation status of European birds. The analysis also allows us to reappraise the role of common forest bird populations as a potential barometer of wider forest health. The new indicator appears to be a useful indicator of the state of widespread European forest birds and might prove to be a useful surrogate for trends in forest biodiversity and forest health, but more work is likely to be needed to understand the interaction between bird populations and their drivers in forest.
Global and regional targets to reduce the rate of biodiversity loss bring with them the need to measure the state of nature and how it is changing. A number of different biodiversity indicators have been developed in response and here we consider bird population indicators in Europe. Birds are often used as surrogates for other elements of biodiversity because they are so well known and well studied, and not for their unique intrinsic value as environmental indicators. Yet, in certain situations and at particular scales, trends in bird populations correlate with those of other taxa making them a valuable biodiversity indicator with appropriate caveats. In this paper, we look at two case studies, in the UK and Europe as a whole, where headline bird indicators, that is, summary statistics based on bird population trends, have been developed and used to inform and assist policy makers. Wild bird indicators have been adopted by many European countries and by the European Union as indicators of biodiversity and of sustainable development. In the discussion, we review the strengths and weaknesses of using bird populations in this way, and look forward to how this work might be developed and expanded.
a b s t r a c tWe calculated a Living Planet Index (LPI) for the Netherlands, based on 361 animal species from seven taxonomic groups occurring in terrestrial and freshwater habitats. Our assessment is basically similar to the global LPI, but the latter includes vertebrate species and trends in population abundance only. To achieve inferences on trends in biodiversity more generally, we added two insect groups (butterflies and dragonflies) and added occupancy trends for species for which we had no abundance trends available. According to the LPI, the state of biodiversity has slightly increased from 1990 to 2014. However, large differences exist between habitat types. We found a considerable increase in freshwater animal populations, probably because of improvement of chemical water quality and rehabilitation of marshland habitats. We found no trend in the LPI for woodland populations. In contrast, populations in farmland and open semi-natural habitats (coastal dunes, heathland and semi-natural grassland) declined, which we attribute to intensive agricultural practices and nitrogen deposition, respectively. The LPI shows that, even in a densely populated western European country, ongoing loss of animal biodiversity is not inevitable and may even be reversed if adequate measures are taken. Our approach enabled us to produce summary statistics beyond the level of species groups to monitor the state of biodiversity in a clear and consistent way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.