The three-dimensional reconstruction of meander-belt deposits from ancient strata provides insight into the formative processes of meander-bend evolution and paleogeographic interpretations. A significant challenge to such analyses is limited exposures in outcrop belts and widely spaced or sparse subsurface datasets. An unprecedented dataset consisting of 600 km 2 of 3-D seismic data and over 1000 well penetrations from the Cretaceous McMurray Formation in northeastern Alberta, Canada, provides a unique opportunity to characterize an ancient continentalscale river system. Paleochannels ranged from 475 to 1180 m wide and from 35 to 50 m deep, with meander-belt width-to-thickness ratios between 107:1 and 401:1. The data reveal evidence for intra-point-bar erosion and punctuated rotation, counterpoint bar development, and protracted channel cutoff and meander-loop abandonment. Observations enable interpretation of morphodynamic processes that are commonly observed in modern systems, yet rarely described from the rock record. A 3-D geocellular model and reconstructed paleochannel migration patterns reveal the evolutionary history of seventeen individual meander belt-elements, including point bars, counterpoint bars, and their associated abandoned channel fills, which have been mapped using core, FMI logs, and seismic data. Results of the study show that intrapoint-bar erosion surfaces bound accretion packages characterized by unique accretion directions, internal stratigraphic architecture, and lithologic properties. We provide evidence for channel-belt-edge confinement and development of a counterpoint bar, as well as the deposition of side bars and preservation of a mid-channel bar during meander-bend abandonment. Analysis of changes in meander-belt morphology over time reveal a decrease in channel-belt width/thickness ratio and sinuosity, which we compare with observations from the lower Mississippi River and attribute to the landward migration of the paleo-backwater limit due to transgression of the Cretaceous Boreal Sea into the Alberta foreland basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.