Zinc and copper are potent antimicrobial compounds. As such, bacteria have evolved a diverse range of tools to prevent metal intoxication. Here, we show that the Gram-positive model organism,
Bacillus subtilis
, produces poly-gamma-glutamic acid (γ-PGA) as a protective mechanism against zinc and copper intoxication and that zinc and copper dependent γ-PGA production occurs by a yet undefined mechanism independent of known γ-PGA regulation pathways.
Zinc and copper are essential micronutrients that serve as a cofactors for numerous enzymes. However, when present at elevated concentrations, zinc and copper are highly toxic to bacteria. To combat the effects of zinc and copper excess, bacteria have evolved a wide array of defense mechanisms. Here, we show that the Gram positive soil bacterium, Bacillus subtilis, produces the extracellular polymeric substance, poly-gamma-glutamate (γ-PGA) as a protective mechanism in response to zinc and copper excess. Furthermore, we provide evidence that zinc and copper dependent γ-PGA production is independent of the DegS-DegQ two component regulatory system and likely occurs at a post-transcriptional level. These data provide new insight into bacterial metal resistance mechanisms and contribute to our understanding of the regulation of bacterial γ-PGA biosynthesis.ImportanceZinc and copper are potent antimicrobial compounds. As such, bacteria have evolved a diverse range of tools to prevent metal intoxication. Here, we show that the Gram-positive model organism, Bacillus subtilis, produces poly-gamma-glutamic acid (γ-PGA) as a protective mechanism against zinc and copper intoxication and that zinc and copper dependent γ-PGA production occurs by a yet undefined mechanism independent of known γ-PGA regulation pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.