Long-term marrow cultures (LTMCs) were established from 27 human marrows. Hematopoietic cells were subjected to multiple rounds of exposure to retroviral vectors during 3 weeks of culture. Seven different retroviral vectors were evaluated. LTMCs were assessed for viability, replication-competent retrovirus, progenitors capable of proliferating in immune-deficient mice, and gene transfer. The average number of adherent cells and committed granulocyte-macrophage progenitors (CFU-GM) recovered from LTMCs was 28% and 11% of the input totals, respectively. There was no evidence by marker rescue assay or polymerase chain reaction (PCR) of replication-competent virus production during LTMC. No toxicity to cellular proliferation due to the transduction procedure was observed. The adherent layers of LTMCs exposed to retroviral vectors were positive for proviral DNA by PCR and by Southern blot analysis. Fifty-three percent of 1,427 individual CFU-GM from transduced LTMC adherent layers were positive for vector-derived DNA. For neocontaining vectors, the average G418 resistance was 28% of 1,393 LTMC-derived CFU-GM. Forty percent of 187 tissues from 30 immune-deficient mice injected with human LTMC cells were positive for human DNA 4-5 weeks after adoptive transfer. These studies indicate that multiple exposures of human LTMCs to retroviral vectors result in consistent and reproducible LTMC viability and gene transfer into committed progenitors. Our results further support the use of transduced LTMC cells in clinical trials of hematopoietic stem cell gene transfer.
Safety testing for replication-competent retrovirus (RCR) is an important requirement in gene transfer clinical trials using retroviral vectors. A sensitive polymerase chain reaction (PCR) method is one approach to RCR detection. Only in the presence of RCR will the pol-env encoding sequences, necessary for viral replication and packaging, be amplified from proviral DNA in infected indicator cells. To avoid false-positive results in this assay it is crucial that indicator cell lines are free of endogenous retroviral sequences that could also be amplified with pol-env PCR primers. We screened candidate murine indicator cell lines and determined that while Mus dunni is free of detectable pol-env sequences, endogenous retroviral sequences do indeed exist in several cell lines and lead to false-positive results in the PCR assay for RCR. Furthermore, these endogenous retroviral sequences are expressed as RNA transcripts in NIH 3T3 and SC-1 cell lines, as determined by PCR amplification of cDNA but, nevertheless, do not give rise to replication-competent particles. We recognize the potential for murine cell lines to undergo spontaneous rearrangements of endogenous viral sequences in culture and give rise to recombinants containing newly acquired contiguous pol-env sequences. Indicator cell lines should thus be carefully selected and monitored on an ongoing basis when used in safety testing using PCR approaches for the detection of RCR.
The systematic investigation of biomatrices by chondrogenic progenitor cell culture systems may lead to important data for the evaluation of the chondrogenic potency biomatrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.