Extracellular vesicles (EVs) are a heterogeneous group of structures which can be classified into smaller in size and relatively homogenous exosomes (EXSMs)—spherical fragments of lipid bilayers from inner cell compartments—and bigger in size ectosomes (ECSMs)—a direct consequence of cell-membrane blebbing. EVs can be found in body fluids of healthy individuals. Their number increases in cancer and other pathological conditions. EVs can originate from various cell types, including leukocytes, erythrocytes, thrombocytes, and neoplastic cells. Platelet microparticles (PMPs) are the most abundant population of EVs in blood. It is well documented that PMPs, being a crucial element of EVs signaling, are involved in tumor growth, metastasis, and angiogenesis and may participate in the development of multidrug resistance by tumor cells. The aim of this review is to present the role of PMPs in carcinogenesis. The biology and functions of PMPs with a particular emphasis on the most recent scientific reports on EV properties are also characterized.
Summary
Serum amyloid A (SAA) is the major acute phase protein in horses. It is produced during the acute phase response (APR), a nonspecific systemic reaction to any type of tissue injury. In the blood of healthy horses, SAA concentration is very low, but it increases dramatically with inflammation. Due to the short half‐life of SAA, changes in its concentration in blood closely reflect the onset of inflammation and, therefore, measurement of SAA useful in the diagnosis and monitoring of disease and response to treatment. Increases in SAA concentration have been described in equine digestive, reproductive and respiratory diseases and following surgical procedures. Moreover, SAA has proven useful for detection of some subclinical pathologies that can disturb training and competing in equine athletes. Increasing availability of diagnostic tests for both laboratory and field use adds to SAA's applicability as a reliable indicator of horses’ health status. This review article presents the current information on changes in SAA concentrations in the blood of healthy and diseased horses, focussing on clinical application of this biomarker.
In horse racing the most acceptable way to objectively evaluate adaptation to increased exertion is to measure lactate blood concentration. However, this may be stressful for the horse, therefore, a simple, noninvasive procedure to monitor race progress is desirable. Forty Thoroughbreds attended race training, with blood samples collected at rest, immediately after, and 30 min after exercise. The lactate concentration was determined 60 s after blood collection using an Accusport®. Thermal imaging of the neck and trunk areas was performed following international veterinary standards from a distance of approximately 2 m from the horse using the same protocol as the blood sampling. The Spearman rank correlation coefficients (ρ) between the changes in the blood lactate concentration and surface temperature measures were found for the regions of interest. The highest positive correlation coefficients were found in the musculus trapezius pars thoracica region for the maximal temperature (T Max; ρ = 0.83; p < 0.0001), the minimal temperature (T Min; ρ = 0.83; p < 0.0001), and the average temperature (T Aver; ρ = 0.85; p < 0.0001) 30 min after the exercise. The results showed that infrared thermography may supplement blood measurements to evaluate adaptation to increased workload during race training, however, more research and references values are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.