Well-controlled fabrication of dislocation networks in Si using direct wafer bonding opens broad possibilities for nanotechnology applications. Concepts of dislocation-network-based light emitters, manipulators of biomolecules, gettering and insulating layers, and three-dimensional buried conductive channels are presented and discussed. A prototype of a Si-based light emitter working at a wavelength of about 1.5 microm with an efficiency potential estimated at 1% is demonstrated.
We have measured plasma histamine concentrations, systemic vascular resistance, cardiac output and arterial pressure during laparotomy in a patient with systemic mastocytosis. The patient developed vasodilation and hypotension during surgery, associated with a massive increase in plasma histamine concentration.
DNA microarrays are promising tools for fast and highly parallel DNA detection by means of fluorescence or gold nanoparticle labeling. However, substrate modification with silanes (as a prerequisite for capture DNA binding) often leads to inhomogeneous surfaces and/or nonspecific binding of the labeled DNA. We examined both different substrate cleaning and activating protocols and also different blocking strategies for optimizing the procedures, especially those for nanoparticle labeling. Contact angle measurements as well as fluorescence microscopy, atomic force microscopy (AFM), and a flatbed scanner were used to analyze the multiple-step process. Although the examined different cleaning and activating protocols resulted in considerably different contact angles, meaning different substrate wettability, silanization led to similar hydrophobic surfaces which could be revealed as smooth surfaces of about 2-4 nm roughness. The two examined silanes (3-glycidoxypropyltrimethoxysilane (GOPS) and 3-aminopropyltriethoxysilane (APTES)) differed in their DNA binding homogeneity, maximum signal intensities, and sensitivity. Nonspecific gold binding on APTES/PDC surfaces could be blocked by treatment in 3% bovine serum albumin (BSA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.