Cox and Chao [2002] reported the detection of a large anomaly in the time series of Earth's dynamic oblateness J2, the lowest‐degree gravity spatial harmonic, in the form of a positive jump since 1998 overshadowing the decreasing secular trend in J2 caused primarily by the postglacial rebound (PGR). Here we report that recent data show that J2 has been rapidly returning toward “normal” (with PGR considered) since early 2001. In search of the geophysical and climatic causes for this “1998–2002 J2 anomaly,” we report an oceanographic event that took place in the extratropic north and south Pacific basins that was found to match remarkably well with the time evolution of the anomaly. We examine the leading (nonseasonal, extratropic Pacific) Empirical Orthogonal Function/Principal Component modes in the sea‐surface height (SSH) data from TOPEX/Poseidon, sea surface temperature (SST) data from the National Center for Environmental Predictions, and output fields of the Estimating the Circulation and the Climate of the Ocean (ECCO) ocean general circulation model (OGCM), including ocean bottom pressure (OBP) and temperature and salinity profiles. The phenomenon appears to be part of the Pacific Decadal Oscillation, and temporal correlations are made. However, quantitatively, the OBP field of the ECCO model predicts a J2 anomaly that is smaller in magnitude than the observed by a factor of about 3. We discuss various possibilities for reconciling this discrepancy in terms of inadequacies of present OGCMs and considering other geophysical contributions; a complete resolution of the J2 enigma awaits further studies.
Redistribution of mass near Earth’s surface alters its rotation, gravity field, and geocenter location. Advanced techniques for measuring these geodetic variations now exist, but the ability to attribute the observed modes to individual Earth system processes has been hampered by a shortage of reliable global data on such processes, especially hydrospheric processes. To address one aspect of this deficiency, 17 yr of monthly, global maps of vegetation biomass were produced by applying field-based relationships to satellite-derived vegetation type and leaf area index. The seasonal variability of biomass was estimated to be as large as 5 kg m−2. Of this amount, approximately 4 kg m−2 is due to vegetation water storage variations. The time series of maps was used to compute geodetic anomalies, which were then compared with existing geodetic observations as well as the estimated measurement sensitivity of the Gravity Recovery and Climate Experiment (GRACE). For gravity, the seasonal amplitude of biomass variations may be just within GRACE’s limits of detectability, but it is still an order of magnitude smaller than current observation uncertainty using the satellite-laser-ranging technique. The contribution of total biomass variations to seasonal polar motion amplitude is detectable in today’s measurement, but it is obscured by contributions from various other sources, some of which are two orders of magnitude larger. The influence on the length of day is below current limits of detectability. Although the nonseasonal geodynamic signals show clear interannual variability, they are too small to be detected.
We have estimated monthly values of the J2 and J3 Earth gravitational coefficients using LAGEOS satellite laser ranging (SLR) data collected between 1980 and 1989. For the same time period, we have also computed corresponding estimates of the variations in these coefficients caused by atmospheric mass redistribution using surface atmospheric pressure estimates from the European Center for Medium Range Weather Forecasts (ECMWF). These data were processed both with and without a correction for the “inverted barometer effect,” the ocean's isostatic response to atmospheric loading. While the estimated zonal harmonics in the orbit analysis accommodate gravitational changes at a reduced level arising from all other higher degree zonal effects, the LAGEOS and atmospheric time series for J2 compare quite well and it appears that the non‐secular variation in J2 can be largely attributed to the redistribution of the atmospheric mass. While the observed changes in the “effective” J3 parameters are not well predicted by the third degree zonal harmonic changes in the atmosphere, both odd zonal time series display strong seasonality. The LAGEOS J3 estimates are very sensitive to as yet unmodeled forces acting on the satellite and these effects must be better understood before determining the dominant geophysical signals contributing to the estimate of this time series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.