In this study, a detection algorithm for suction and regurgitation of the centrifugal pump during left heart bypass without relying on external flow or pressure sensors was developed and evaluated in acute studies using adult goats. The detection scheme relies on power spectral density (PSD) analysis of the motor current waveform through which the waveform deformation index (WDI) is obtained. This index is defined as the ratio of the fundamental component of the PSD to the higher PSD components, and its value increases with the deformation of the basic waveform. By assuming that the undistorted motor current waveform can be represented by a pure sine waveform, we theoretically synthesized various waveforms which have different second harmonic components. We were able to synthesize the waveform whose shape was close to the distorted motor current waveform under varying suction levels obtained in a mock loop study. From this study, we came to the conclusion that the WDI value of 0.2 can serve as a threshold level in deciding the suction and regurgitation speeds (rpm) during left heart bypass. In the study using adult goats, we were successful in minimizing both regurgitation and suction when the centrifugal pump speed was adjusted based on the WDI algorithm. The resultant bypass flow ranged from 1.5 to 2.0 L/min which was around 60% of the total flow. Further study is underway to evaluate the applicability of the WDI method in optimizing bypass pump flow.
In this study, a tripod supported sealless centrifugal blood pump was designed and fabricated for implantable application using a specially designed DC brushless motor. The tripod structure consists of 3 ceramic balls mounted at the bottom surface of the impeller moving in a polyethylene groove incorporated at the bottom pump casing. The follower magnet inside the impeller is coupled to the driver magnet of the motor outside the bottom pump casing, thus allowing the impeller to slide-rotate in the polyethylene groove as the motor turns. The pump driver has a weight of 230 g and a diameter of 60 mm. The acrylic pump housing has a weight of 220 g with the priming volume of 25 ml. At the pump rpm of 1,000 to 2,200, the generated head pressure ranged from 30 to 150 mm Hg with the maximum system efficiency being 12%. When the prototype pump was used in the pulsatile mock loop to assist the ventricle from its apex to the aorta, a strong correlation was obtained between the motor current and bypass flow waveforms. The waveform deformation index (WDI), defined as the ratio of the fundamental to the higher order harmonics of the motor current power spectral density, was computed to possibly detect the suction occurring inside the ventricle due to the prototype centrifugal pump. When the WDI was kept under the value of 0.20 by adjusting the motor rpm, it was successful in suppressing the suction due to the centrifugal pump in the ventricle. The prototype sealless, centrifugal pump together with the control method based on the motor current waveform analysis may offer an intermediate support of the failing left or right ventricle bridging to heart transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.