In this study, a detection algorithm for suction and regurgitation of the centrifugal pump during left heart bypass without relying on external flow or pressure sensors was developed and evaluated in acute studies using adult goats. The detection scheme relies on power spectral density (PSD) analysis of the motor current waveform through which the waveform deformation index (WDI) is obtained. This index is defined as the ratio of the fundamental component of the PSD to the higher PSD components, and its value increases with the deformation of the basic waveform. By assuming that the undistorted motor current waveform can be represented by a pure sine waveform, we theoretically synthesized various waveforms which have different second harmonic components. We were able to synthesize the waveform whose shape was close to the distorted motor current waveform under varying suction levels obtained in a mock loop study. From this study, we came to the conclusion that the WDI value of 0.2 can serve as a threshold level in deciding the suction and regurgitation speeds (rpm) during left heart bypass. In the study using adult goats, we were successful in minimizing both regurgitation and suction when the centrifugal pump speed was adjusted based on the WDI algorithm. The resultant bypass flow ranged from 1.5 to 2.0 L/min which was around 60% of the total flow. Further study is underway to evaluate the applicability of the WDI method in optimizing bypass pump flow.
Prolonged monotonous driving may lower a driver's awareness level as well as increasing their stress level due to the compulsion to maintain safe driving, which may result in an increased risk of a traffic accident. There is therefore an opportunity for technological assessment of driver physiological status to be applied in-car, hopefully reducing the incidence of potentially dangerous situations. As part of our long-term aim to develop such a system, we describe here the investigation of differential skin temperature measurement as a possible marker of a driver's stress level. In this study, healthy male (n=18) & female (n=7) subjects were investigated under environment-controlled conditions, whilst being subjected to simulated monotonous travel at constant speed on a test-course. We acquired physiological variables, including facial skin temperature which consists of truncal and peripheral skin temperatures (Ts) using thermography, beat-by-beat blood pressure (BP), cardiac output (CO), total peripheral resistance (TPR), and normalized pulse volume (NPV) used as an indicator of local peripheral vascular tone. We then investigated the driver's reactivity in terms of skin temperatures with this background of cardiovascular haemodynamics. We found that the simulated monotonous driving produced a gradual drop in peripheral Ts following the driving stress, which, through interpretation of the TPR and NPV recordings, could be explained by peripheral sympathetic activation. On the other hand, the truncal Ts was not influenced by the stress. These findings lead us to suggest that truncal-peripheral differential Ts could be used as a possible index indicative of the driver's stress.
In this study, centrifugal pump performance was examined in a mock circulatory loop to derive an automatic pump rotational speed (rpm) control method. The pivot bearing supported sealless centrifugal pump was placed in the left ventricular apex to aorta bypass mode. The pneumatic pulsatile ventricle was used to simulate the natural ventricle. To simulate the suction effect in the ventricle, a collapsible rubber tube was placed in the inflow port of the centrifugal pump in series with the apex of the simulated ventricle. Experimentally, the centrifugal pump speed (rpm) was gradually increased to simulate the suction effect. The pump flow through the centrifugal pump measured by an electromagnetic flowmeter, the aortic pressure, and the motor current were continuously digitized at 100 Hz and stored in a personal computer. The analysis of the cross-spectral density between the pump flow and motor current waveforms revealed that 2 waveforms were highly correlated at the frequency range between 0 and 4 Hz, with the coherence and phase angles being close to 1.0 and 0 degree, respectively. The fast Fourier transform analysis of the motor current indicated that the second harmonic component of the motor current power density increased with the occurrence of the suction effect in the circuit. The ratio of the fundamental to the second harmonic component decreased less than 1.3 as the suction effect developed in the circuit. It is possible to detect and prevent the suction effect of the centrifugal blood pump in the natural ventricle through analysis of the motor current waveform.
Prolonged periods of driving in monotonous situations may lower a driver's activation state as well as increasing their stress level due to the compulsion to maintain safe driving, which may result in an increased risk of a traffic accident. There is therefore an opportunity for technological assessment of driver physiological status to be applied in-car, hopefully reducing the incidence of potentially dangerous situations. As part of our long-term aim to develop such a system, we describe here the investigation of differential skin temperature measurement as a possible marker of a driver's stress level. 10 healthy male subjects were studied, under environment-controlled conditions, whilst being subjected to simulated monotonous travel at constant speed on a test-course. We acquired measurements of relevant physiological variables, including truncal and peripheral skin temperatures (T(s)), beat-by-beat blood pressure (BP), cardiac output (CO), total peripheral resistance (TPR), and normalized pulse volume (NPV) used as an indicator of local peripheral vascular tone. We then investigated the driver's reactivity in terms of cardiovascular haemodynamics and skin temperatures. We found that the simulated monotonous driving produced a gradual drop in peripheral T(s) following the driving stress, which, through interpretation of the TPR and NPV recordings, could be explained by peripheral sympathetic activation. On the other hand, the truncal T(s) was not influenced by the stress. These findings lead us to suggest that truncal-peripheral differential T(s) might be used as a possible index indicative of the driver's stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.