Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto-and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond=1 as=10 −18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is ∼ 152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nano physics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution.
We have investigated the intensity dependence of high-order harmonic generation in argon when the two shortest quantum paths contribute to the harmonic emission. For the first time to our knowledge, experimental conditions were found to clearly observe interference between these two quantum paths that are in excellent agreement with theoretical predictions. This result is a first step towards the direct experimental characterization of the full single-atom dipole moment and demonstrates an unprecedented accuracy of quantum path control on an attosecond time scale.
In the last three decades, we have witnessed incredible advances in laser technology and in the understanding of nonlinear laser-matter interactions, crowned recently by the award of the Nobel prize to Gérard Mourou and Donna Strickland [1,2]. It is now routinely possible to produce few-cycle femtosecond (1 fs = 10 −15 s) laser pulses in the visible and mid-infrared regimes [3,4]. By focusing such ultrashort laser pulses on gas or solid targets, possibly in a presence of nano-structures [5], the targets are subjected to an ultra-intense electric field, with peak field strengths approaching the binding field inside the atoms themselves. Such fields permit the exploration of the interaction between strong electromagnetic coherent radiation and an atomic or molecular system with unprecedented spatial and temporal resolution [6]. On one hand, HHG nowadays can be used to generate attosecond pulses in the extreme ultraviolet [7,8], or even in the soft X-ray regime [9]. Such pulses themselves may be used for dynamical spectroscopy of matter; despite carrying modest pulse energies, they exhibit excellent coherence properties [10,11]. Combined with femtosecond pulses they can also be used to extract information about the laser pulse electric field itself [12]. HHG sources therefore offer an important alternative to other sources of XUV and X-ray radiation: synchrotrons, free electron lasers, X-ray lasers, and laser plasma sources. Moreover, HHG pulses can provide information about the structure of the target atom, molecule or solid [13][14][15]. Of course, to decode such information from a highly nonlinear HHG signal is a challenge, and that is why a possibly perfect, and possibly "as analytical as possible" theoretical understanding of these processes is in high demand. Here is the first instance where SFA offers its basic services.Since electronic motion is governed by the waveform of the laser electric field, an important quantity to describe the electric field shape is the so-called absolute phase or carrier-envelope phase (CEP). Control over the CEP is paramount for extracting information about electron dynamics, and to retrieve structural information from atoms and molecules [13,16,17]. For instance, in HHG an electron is liberated from an atom or molecule through ionization, which occurs close to the maximum of the electric field. Within the oscillating field, the electron can thus accelerate along oscillating trajectories, which may result in recollision with the parent ion, roughly when the laser field approaches a zero value. Control over the CEP is particularly important for HHG, when targets are driven by laser pulses comprising only one or two optical cycles. In that situation the CEP determines the relevant electron trajectories, i.e. the CEP determines whether emission results in a single or in multiple attosecond bursts of radiation [16,18].The influence of the CEP on electron emission is also extremely important. It was demonstrated for instance in an anti-correlation experiment, in which the number of AT...
The strong-field process of high-harmonic generation is the foundation for generating isolated attosecond pulses, which are the fastest controllable events ever induced. This coherent extreme-ultraviolet radiation has become an indispensable tool for resolving ultrafast motion in atoms and molecules. Despite numerous spectacular developments in the new field of attoscience, the low data-acquisition rates imposed by low-repetition-rate (maximum of 3 kHz) laser systems hamper the advancement of these sophisticated experiments. Consequently, the availability of high-repetition-rate sources will overcome a major obstacle in this young field. Here, we present the first megahertz-level source of extreme-ultraviolet continua with evidence of isolated attosecond pulses using a fibre laser-pumped optical parametric amplifier for high-harmonic generation at 0.6 MHz. This 200-fold increase in repetition rate will enable and promote a vast variety of new applications, such as attosecond-resolution coincidence and photoelectron spectroscopy, or even video-rate acquisition for spatially resolved pump-probe measurements
We demonstrate control of short and long quantum trajectories in high harmonic emission through the use of an orthogonally polarized two color field. By controlling the relative phase φ between the two fields we show via classical and quantum calculations that we can steer the 2-dimensional trajectories to return, or not, to the core and so control the relative strength of the short or long quantum trajectory contribution. In experiments we demonstrate that this leads to robust control over the trajectory contributions using a drive field from a femtosecond laser composed of the fundamental ω at 800 nm (intensity ∼ 1.2 × 10 14 W cm −2 ) and its weaker orthogonally polarized second harmonic 2ω (intensity ∼ 0.3 × 10 14 W cm −2 ) with the relative phase between the ω and 2ω fields varied simply by tilting a fused silica plate. This is the first demonstration of short and long quantum trajectory control at the single-atom level.High harmonic generation (HHG) has been extensively studied in the last decade as, for instance, a tool to generate attosecond pulses [1] and to measure both fast nuclear dynamics [2] and hole migration in molecular cations [3,4]. Measuring nuclear and electron dynamics from the emitted harmonics is termed HHG spectroscopy and has hitherto concentrated upon isolating the contribution of the electron trajectories that return most quickly to the core [5] (the short trajectories) to provide a well defined temporal mapping for the emission of different frequency harmonics in the spectrum [2]. To extend these measurement concepts we would like to harness the second set of quantum trajectories, the long trajectories, which return after a longer time in the continuum and so increase the temporal range available in the measurement. Ideally this should be done without changing any other aspect of the experimental conditions e.g. the intensity. Hitherto long trajectories could only be optimised by adjusting the macroscopic phase-matching, a procedure that inevitably alters the experimental intensity. We demonstrate a simple experimental technique that provides a powerful tool to achieve the direct selection of the quantum trajectories for a single atom without changing the field intensity. We find that the phase between two orthogonally polarized fields at ω and 2ω determines whether the momentum transfer from the 2ω field permits or frustrates the recollision. We observed that the phases of the second harmonic field that optimise the recollision differ by π/2 for the short and long trajectory. This provides robust control over the single atom quantum trajectories and allows to efficiently switch between trajectories, shifting the emission time for some harmonics by more than 0.3 of an optical period.In the simplified picture, commonly applied to describe HHG, an electron is ionised near the peak of the laser electric field and is driven away from its parent ion. When the field changes direction, the electron is driven back and may recombine [5], emitting a photon with fre- quency that is an odd multip...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.