Предметом досліджень статті є моделі ознак розподілів даних дескрипторів ключових точок для вирішення задач розпізнавання та класифікації візуальних об’єктів у системах комп’ютерного зору. Метою є дослідження модифікації методу структурної класифікації на підставі зіставлення розподілів даних для фрагментів дескрипторного опису зображення. Завдання: розроблення математичних та програмних моделей для ефективного за швидкодією обчислення релевантності описів на підставі розподілів даних, вивчення властивостей цих моделей, оцінювання результативності у задачі класифікації зображень. Застосовані методи: детектор ORB для формування дескрипторів ключових точок, статистичний аналіз даних, методи побудови розподілів бітових даних, апарат метричного визначення релевантності, програмне моделювання. Отримані результати. Перехід від опису як множини дескрипторів до розподілів фрагментів, побудова та зіставлення розподілів забезпечують достатню результативність класифікації. Класифікація виконується у кілька разів швидше, ніж при використанні безпосередньо множини дескрипторів. Висновки. Наукова новизна дослідження полягає в удосконаленні методу структурної класифікації зображень на основі впровадження блочної структури опису із використанням значень розподілу для фрагментів множини дескрипторів. Практична значущість – досягнення суттєвого рівня підвищення швидкодії при обчисленні релевантності для класифікації, підтвердження результативності запропонованого простору ознак на прикладах зображень, отримання прикладних програмних моделей для дослідження та впровадження методів класифікації у системах комп’ютерного зору
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.