Carbamate derivatives of N-propargylaminoindans (Series I) and N-propargylphenethylamines (Series II) were synthesized via multistep procedures from the corresponding hydroxy precursors. The respective rasagiline- and selegiline-related series were designed to combine inhibitory activities of both acetylcholine esterase (AChE) and monoamine oxidase (MAO) by virtue of their carbamoyl and propargylamine pharmacophores. Each compound was tested for these activities in vitro in order to find molecules with similar potencies against each enzyme. Compounds with such dual AChE and MAO inhibitory activities are expected to have potential for the treatment of Alzheimer's disease. The observed SAR also offers insight into the requirements of the active sites on these enzymes. A carbamate moiety was found to be essential for AChE inhibition, which was absent in the corresponding hydroxy precursors. The propargyl group caused 2-70-fold decrease in AChE inhibitory activity (depending on the position of the carbamoyl group) of Series I, but had little or no effect in Series II. Thus, the 6- and 7-carbamyloxyphenyls in Series I were either equipotent to, or slightly (2- to 5-fold) less active as AChE inhibitors than, the corresponding compounds in Series II, while the 4-carbamyloxyphenyls were more potent. The presence of the carbamate moiety in 6- and 7-carbamyloxyphenyls of Series I, considerably decreased MAO-A and -B inhibitory activity, compared to that of the parent hydroxy analogues, while the opposite was true for Series II. Thus, the 6- and 7-carbamyloxyphenyls in Series I were 2-3 orders of magnitude weaker MAO inhibitors while the 4- carbamyloxyphenyls were equipotent with the corresponding compounds in Series II. In both series, N-methylation of the propargylamine enhanced the MAO (A and B equally) inhibitory activities and decreased the AChE inhibitory activity. Two candidates belonging to the indan and tetralin ring systems (24c, 27b) and one phenethylamine (53d) were identified as possible leads for further development based on the following criteria: (a) comparable AChE and MAO-B inhibitory activities, (b) good to moderate AChE inhibitory activity, and (c) lack of strong MAO-A selectivity. However, it is likely that these compounds will be metabolized to the corresponding phenols, with inhibitory activities against AChE and/or MAO-A or -B, different from those of the parent carbamates. Thus, the apparent enzyme inhibition will be a result of the combined inhibition of all of these individual metabolites. The results of our ongoing in vivo screening programs will be published elsewhere.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Bicyclic thiohydantoins were synthesized in a stereoselective manner by reacting (2R)/(2S)‐diastereoisomer mixtures of 1,3‐thiazolidine‐2,4‐dicarboxylic acids or their dimethyl diesters with PhNCS. 5,5‐Dimethyl‐1,3‐thiazolidine‐2,4‐dicarboxylic acid with PhNCS led to a cyclization involving the CO group at the C(2) center of the thiazolidine ring, while the acid's dimethyl diester gave cyclization involving the CO group at C(4). In contrast, reactions involving unsubstituted 1,3‐thiazolidine‐2,4‐dicarboxylic acid or its dimethyl diester led to thiohydantoins in which the ring closure had taken place only with the COO group at C(4). Independently of the direction of the ring closure, all reactions produce exclusively products with the (R)‐configuration at C(2). The configurational assignments were based on 1H‐ and 13C‐NMR studies, and confirmed by X‐ray crystallographic analyses.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.