The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device’s unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power ‘starvation’ reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in–out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The use of radio frequency (RF) waves in fusion plasmas for heating, for non-inductive current generation, for profile control and for diagnostics has been well established. The RF waves, excited by antenna structures placed near the wall of a fusion device, have to propagate through density fluctuations at the plasma edge. These fluctuations can modify the properties of the RF waves that propagate towards the core of the plasma. A full-wave electromagnetic computational code ScaRF based on the finite difference frequency domain (FDFD) method has been developed to study the effect of density turbulence on RF waves. The anisotropic plasma permittivity used in the scattering studies is that for a magnetized, cold plasma. The code is used to study the propagation of an RF plane wave through a modulated, spatially periodic density interface. Such an interface could arise in the edge region due to magnetohydrodynamic instability or drift waves. The frequency of the plane wave is taken to be in the range of the electron cyclotron frequency. The scattering analysis is applicable to ITER-like plasmas, as well as to plasmas in medium sized tokamaks such as TCV, ASDEX-U and DIII-D. The effect of different density contrasts across the interface and of different spatial modulations are discussed. While ScaRF is used to study a periodic density fluctuation, the code is general enough to include different varieties of density fluctuations in the edge region – such as blobs and filaments, and spatially random fluctuations.
The European Gyrotron Consortium (EGYC) is developing the European 1 MW, 170 GHz Continuous Wave (CW) industrial prototype gyrotron for ITER in cooperation with Thales Electron Devices (TED) and Fusion for Energy (F4E). This conventional, hollow-cavity gyrotron, is based on the 1 MW, 170 GHz Short-Pulse (SP) modular gyrotron that has been designed and manufactured by the Karlsruhe Institute of Technology (KIT) in collaboration with TED. Both gyrotrons have been tested successfully in multiple experiments. In this work we briefly report on the results with the CW gyrotron at KIT and we focus at the experiments at the Swiss Plasma Center (SPC). In addition, we present preliminary results from various upgrades of the SP tube that are currently tested at KIT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.