The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major Neutral Beam Injection (NBI) upgrade providing record power in 2019-2020, and tested the technical & procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed Shattered Pellet Injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design & operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.
Alpha particles with energies on the order of megaelectronvolts will be the main source of plasma heating in future magnetic confinement fusion reactors. Instead of heating fuel ions, most of the energy of alpha particles is transferred to electrons in the plasma. Furthermore, alpha particles can also excite Alfvénic instabilities, which were previously considered to be detrimental to the performance of the fusion device. Here we report improved thermal ion confinement in the presence of megaelectronvolts ions and strong fast ion-driven Alfvénic instabilities in recent experiments on the Joint European Torus. Detailed transport analysis of these experiments reveals turbulence suppression through a complex multi-scale mechanism that generates large-scale zonal flows. This holds promise for more economical operation of fusion reactors with dominant alpha particle heating and ultimately cheaper fusion electricity.
The use of radio frequency (RF) waves in fusion plasmas for heating, for non-inductive current generation, for profile control and for diagnostics has been well established. The RF waves, excited by antenna structures placed near the wall of a fusion device, have to propagate through density fluctuations at the plasma edge. These fluctuations can modify the properties of the RF waves that propagate towards the core of the plasma. A full-wave electromagnetic computational code ScaRF based on the finite difference frequency domain (FDFD) method has been developed to study the effect of density turbulence on RF waves. The anisotropic plasma permittivity used in the scattering studies is that for a magnetized, cold plasma. The code is used to study the propagation of an RF plane wave through a modulated, spatially periodic density interface. Such an interface could arise in the edge region due to magnetohydrodynamic instability or drift waves. The frequency of the plane wave is taken to be in the range of the electron cyclotron frequency. The scattering analysis is applicable to ITER-like plasmas, as well as to plasmas in medium sized tokamaks such as TCV, ASDEX-U and DIII-D. The effect of different density contrasts across the interface and of different spatial modulations are discussed. While ScaRF is used to study a periodic density fluctuation, the code is general enough to include different varieties of density fluctuations in the edge region – such as blobs and filaments, and spatially random fluctuations.
We rigorously analyze and compare preferential-order waveguide grating output couplers using the finite-difference time-domain method in the total-field/scattered-field formulation for TE and TM polarizations. Four kinds of preferential-order grating couplers are studied: volume holographic grating couplers, slanted parallelogrammic surface-relief grating couplers, double-corrugated surface-relief grating couplers, and reflecting-stack surface-relief grating couplers. The outcoupling efficiencies and branching ratios of the couplers, revealing their preferentiality, are calculated and compared with the rigorous coupled-wave analysis leaky-mode method. In addition, their performance is examined in terms of the main design parameters and the excitation wavelength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.