Soil quality assessment provides a tool for evaluating the sustainability of soils under different crop cafeterias. Our objective was to develop the soil quality index for evaluating the soil quality indicators under different cropping systems in northwest Himalaya-India. Composite soil samples were taken from the study area from different cropping systems which include T1 (forest soil control), T2 (rice-oilseed, lower belts), T3 (rice-oilseed, higher belts), T4 (rice-oats), T5 (rice-fallow), T6 (maize-oats), T7 (maize-peas), T8 (apple), T9 (apple-beans), and T10 (apple-maize). Physical, chemical, and biological soil indicators were determined, and it was found that soil enzyme activities involved in nutrient cycling were significantly higher in forest soils, which were reflected in higher levels of available pool of nutrients. Carbon stocks were found significantly higher in forest soil which was translated in improved soil physical condition. Principal component analysis (PCA) was performed to reduce multidimensionality of data followed by scoring by homothetic transformation of the selected indicators. Pearson's interclass correlation was performed to avoid redundancy, and highly correlated variables were not retained. Inclusion of legumes in the apple orchard floor recorded highest soil quality rating across the treatments. Cereal-based cropping systems were found in lower soil quality rating; however, the incorporation of peas in the system improved soil health.
-Large field to field variability restricts efficient fertilizer management when broad based blanket recommendations are used in rice. Hence, the nutrient management for rice requires an approach that enables adjustments in nutrient applications to accommodate the sitespecific needs of the crop for supplemental nutrients. This study was conducted to establish and evaluate the threshold leaf colour value to guide in-season need based fertilizer N top dressing in Pusa Sugandh-3. For this purpose various growth parameters, yield parameters, grain and straw yield were measured in both years. Almost all the measured parameters in LCC 4 @ 20 kg N ha -1 were significantly higher than remaining LCC and fixed time N management treatments as well as control. Following the principle that threshold value is the one which simultaneously optimizes grain yield and NUE, LCC 4 @ 20 kg N ha -1 was adjudged as the threshold value for real time nitrogen management in Pusa Sugandh-3.
Soil quality assessment serves as an index for appraising soil sustainability under varied soil management approaches. Our current investigation was oriented to establish a minimum data set (MDS) of soil quality indicators through the selection of apt scoring functions for each indicator, thus evaluating soil quality in the Himalayan foothills. The experiment was conducted during two consecutive years, viz. 2016 and 2017, and comprised of 13 treatments encompassing different combinations of chemical fertilizers, organic manure, and biofertilizers, viz. (i) the control, (ii) 20 kg P + PSB (Phosphorus solubilizing bacteria), (iii) 20 kg P + PSB + Rhizobium, (iv) 20 kg P + PSB + Rhizobium+ FYM, (v) 20 kg P + 0.5 kg Mo + PSB, (vi) 20 kg P + 0.5 kg Mo + PSB + Rhizobium, (vii) 20 kg P + 0.5 kg Mo + PSB + Rhizobium + FYM, (viii) 40 kg@ P + PSB, (ix) 40 kg P + PSB + Rhizobium, (x) 40 kg P + PSB + Rhizobium+ FYM, (xi) 40 kg P + 0.5 kg Mo + PSB, (xii) 40 kg P + 0.5 kg Mo + PSB + Rhizobium, and (xiii) 40 kg P + 0.5 kg Mo + PSB + Rhizobium + FYM. Evaluating the physical, chemical, and biological indicators, the integrated module of organic and inorganic fertilization reflected a significant improvement in soil characteristics such as the water holding capacity, available nitrogen, phosphorus, potassium, and molybdenum, different carbon fractions and soil biological characteristics encircling microbial biomass carbon (MBC), and total bacterial and fungal count. A principal component analysis (PCA) was executed for the reduction of multidimensional data ensued by scoring through the transformation of selected indicators. The soil quality index (SQI) established for different treatments exhibited a variation of 0.105 to 0.398, while the magnitude of share pertaining to key soil quality indicators for influencing soil quality index encircled the water holding capacity (WHC), the dehydrogenase activity (DHA), the total bacteria count, and the available P. The treatments that received an integrated nutrient package exhibited a higher SQI (T10—0.398; T13—0.372; T7—0.307) in comparison to the control treatment (T1—0.105). An enhanced soil quality index put forth for all organic treatments reflected an edge of any conjunctive package of reduced synthetic fertilizers with prime involvement of organic fertilizers over the sole application of inorganic fertilizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.