Vacuum hydrogen annealing of TiO2 leads to increased visible light absorption. The origin thereof was revealed by ab initio calculations and X-ray photoelectron spectroscopy.
The efficient separation of photogenerated electron-hole pairs and stability against corrosion are critical preconditions for a photoelectrode to achieve a high photoelectrochemical performance. In this work it is shown how both criteria can be met by employing a heterostructure of bismuth vanadate (BiVO4) and titanium dioxide (TiO2) as the photocatalyst. Using electronic structure calculations, an alteration of the band alignment is predicted at the heterojunction from type I to type II by hydrogen treatment of the top TiO2 layer. Guided by this idea, we have fabricated heterostructures of BiVO4 and TiO2 and studied the effect of hydrogen treatment. The achieved band engineering results in a significant improvement in photocurrent density, up to 4.44 mA cm-2 at 1.23 V vs RHE, and a low onset potential, -0.14 V vs RHE, under visible light illumination
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.