The application of reinforcement learning to the optimal control of building systems has gained traction in recent years as it can cut the building energy consumption and improve human comfort. Despite using sample-efficient reinforcement learning algorithms, most related work requires several months of sensor data and operational parameters of the building to train an agent that outperforms existing rule-based controllers in a large multi-zone building. Moreover, exploring the large state and action spaces can result in poor indoor environmental quality for occupants. In this paper, we propose to reduce the training cost of a policy gradient reinforcement learning algorithm by learning a library of control policies on a training building and taking advantage of both environmental and policy diversity. To transfer these policies to a target building, which can be different from the training building, we develop a simple method to assign the best pretrained policy in the library to each zone of the target building. We show that even without retraining the transferred policies on the target building, they can reduce the HVAC energy consumption by 40.4% compared to a fixed-schedule baseline and by 48.97% compared to agents trained on the target building for 5,000 months. The plausibility of our results underscores the importance of using diversity and transfer learning in multi-agent reinforcement learning settings and could pave the way for the adoption of reinforcement-learning based controllers in real buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.