Since the development of DNA origami by Paul Rothemund in 2006, the field of structural DNA nanotechnology has undergone tremendous growth. Through DNA origami and related approaches, self-assembly of specified DNA sequences allows for the ‘bottom-up’ construction of diverse nanostructures. By utilizing different sets of small ‘staple’ DNA strands to direct the folding of a long scaffold strand in diverse ways, DNA origami has particularly been incorporated into a variety of prototypical applications beyond the two-dimensional (2D) smiley face. In this review, the basis of DNA nanotechnology, methods of self-assembly, and Rothemund’s DNA origami breakthrough are discussed first. Next, some of the most promising applications of structural DNA nanotechnology since 2006 are summarized. These include utilizing DNA origami as a tool for creating 3D nanostructures (including DNA bricks), as well as structural (ligand capsid binding, viral capsid binding, DNA NanoOctahedron, DNA mold, photonic devices, energy transfer units), and dynamic (DNA box-with-lid, DNA nano-robot, DNA barges, amphipathic DNA structures, DNA nanocircuits) applications of DNA origami.
Pembrolizumab is a humanized monoclonal antibody that targets the programmed cell death 1 protein (PD-1) receptor and blocks the inhibitory checkpoint interaction between PD-1 and its ligands. This interaction leads to the upregulation of effector T-cells and downregulating regulatory T-cell production. Although this mechanism is essential for the management of cancer, it may lead to decreased self-tolerance with an autoimmune reaction toward healthy functioning tissue. One of the less commonly reported and less understood immune-related adverse events includes neuromuscular complications. We present a rare case of autoimmune demyelinating polyneuropathy and hydrocephalus secondary to pembrolizumab use for cutaneous squamous cell carcinoma of the cheek.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.