Although considerable progress has been made in dissecting the signaling pathways involved in the innate immune response, it is now apparent that this response can no longer be productively thought of in terms of simple linear pathways. InnateDB (www.innatedb.ca) has been developed to facilitate systems-level analyses that will provide better insight into the complex networks of pathways and interactions that govern the innate immune response. InnateDB is a publicly available, manually curated, integrative biology database of the human and mouse molecules, experimentally verified interactions and pathways involved in innate immunity, along with centralized annotation on the broader human and mouse interactomes. To date, more than 3500 innate immunity-relevant interactions have been contextually annotated through the review of 1000 plus publications. Integrated into InnateDB are novel bioinformatics resources, including network visualization software, pathway analysis, orthologous interaction network construction and the ability to overlay user-supplied gene expression data in an intuitively displayed molecular interaction network and pathway context, which will enable biologists without a computational background to explore their data in a more systems-oriented manner.
http://www.pathogenomics.ca/cerebral
Abstract-Systems biologists use interaction graphs to model the behavior of biological systems at the molecular level. In an iterative process, such biologists observe the reactions of living cells under various experimental conditions, view the results in the context of the interaction graph, and then propose changes to the graph model. These graphs serve as a form of dynamic knowledge representation of the biological system being studied and evolve as new insight is gained from the experimental data. While numerous graph layout and drawing packages are available, these tools did not fully meet the needs of our immunologist collaborators. In this paper, we describe the data information display needs of these immunologists and translate them into design decisions. These decisions led us to create Cerebral, a system that uses a biologically guided graph layout and incorporates experimental data directly into the graph display. Small multiple views of different experimental conditions and a data-driven parallel coordinates view enable correlations between experimental conditions to be analyzed at the same time that the data is viewed in the graph context. This combination of coordinated views allows the biologist to view the data from many different perspectives simultaneously. To illustrate the typical analysis tasks performed, we analyze two datasets using Cerebral. Based on feedback from our collaborators we conclude that Cerebral is a valuable tool for analyzing experimental data in the context of an interaction graph model.
BackgroundTraditional flow cytometry data analysis is largely based on interactive and time consuming analysis of series two dimensional representations of up to 20 dimensional data. Recent technological advances have increased the amount of data generated by the technology and outpaced the development of data analysis approaches. While there are advanced tools available, including many R/BioConductor packages, these are only accessible programmatically and therefore out of reach for most experimentalists. GenePattern is a powerful genomic analysis platform with over 200 tools for analysis of gene expression, proteomics, and other data. A web-based interface provides easy access to these tools and allows the creation of automated analysis pipelines enabling reproducible research.ResultsIn order to bring advanced flow cytometry data analysis tools to experimentalists without programmatic skills, we developed the GenePattern Flow Cytometry Suite. It contains 34 open source GenePattern flow cytometry modules covering methods from basic processing of flow cytometry standard (i.e., FCS) files to advanced algorithms for automated identification of cell populations, normalization and quality assessment. Internally, these modules leverage from functionality developed in R/BioConductor. Using the GenePattern web-based interface, they can be connected to build analytical pipelines.ConclusionsGenePattern Flow Cytometry Suite brings advanced flow cytometry data analysis capabilities to users with minimal computer skills. Functionality previously available only to skilled bioinformaticians is now easily accessible from a web browser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.