Amphibian metamorphosis is a transitional period that involves significant changes in the cell-type populations and biological processes occurring in the brain. Analysis of gene expression dynamics during this process may provide insight into the molecular events underlying these changes. We conducted differential gene expression analyses of the developing Xenopus laevis tadpole brain during this period in two ways: first, over stages of the development in the midbrain and, second, across regions of the brain at a single developmental stage. We found that genes pertaining to positive regulation of neural progenitor cell proliferation as well as known progenitor cell markers were upregulated in the midbrain prior to metamorphic climax; concurrently, expression of cell cycle timing regulators decreased across this period, supporting the notion that cell cycle lengthening contributes to a decrease in proliferation by the end of metamorphosis. We also found that at the start of metamorphosis, neural progenitor populations appeared to be similar across the fore-, mid-, and hindbrain regions. Genes pertaining to negative regulation of differentiation were upregulated in the spinal cord compared to the rest of the brain, however, suggesting that different programs may regulate neurogenesis there. Finally, we found that regulation of biological processes like cell fate commitment and synaptic signaling follow similar trajectories in the brain across early tadpole metamorphosis and mid- to late-embryonic mouse development. By comparing expression across both temporal and spatial conditions, we have been able to illuminate cell-type and biological pathway dynamics in the brain during metamorphosis.
In developing Xenopus tadpoles, the optic tectum begins to receive patterned visual input while visuomotor circuits are still undergoing neurogenesis and circuit assembly. This visual input regulates neural progenitor cell fate decisions such that maintaining tadpoles in the dark increases proliferation, expanding the progenitor pool, while visual stimulation promotes neuronal differentiation. To identify regulators of activity-dependent neural progenitor cell fate, we used RNA-Seq to profile the transcriptomes of proliferating neural progenitor cells and newly-differentiated immature neurons. Out of 1,130 differentially expressed (DE) transcripts, we identified six DE transcription factors which are predicted to regulate the majority of the other DE transcripts. Here we focused on Breast cancer 1 (BRCA1) and the ETS-family transcription factor, ELK-1. BRCA1 is known for its role in cancers, but relatively little is known about its potential role in regulating neural progenitor cell fate. ELK-1 is a multifunctional transcription factor which regulates immediate early gene expression. We investigated the effect of BRCA1 and ELK-1 on activity-regulated neurogenesis in the tadpole visual system using in vivo timelapse imaging to monitor the fate of turbo-GFP-expressing SOX2+ neural progenitor cells in the optic tectum. Our longitudinal in vivo imaging analysis shows that knockdown of either BRCA1 or ELK-1 altered the fates of neural progenitor cells, and furthermore that the effects of visual experience on neurogenesis depend on BRCA1 expression, while the effects of visual experience on neuronal differentiation depend on ELK-1 expression. These studies provide insight into the potential mechanisms by which neural activity affects neural progenitor cell fate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.