The joint degree matrix of a graph gives the number of edges between vertices of degree i and degree j for every pair (i, j). One can perform restricted swap operations to transform a graph into another with the same joint degree matrix. We prove that the space of all realizations of a given joint degree matrix over a fixed vertex set is connected via these restricted swap operations. This was claimed before, but there is an error in the previous proof, which we illustrate by example. We also give a simplified proof of the necessary and sufficient conditions for a matrix to be a joint degree matrix. Finally, we address some of the issues concerning the mixing time of the corresponding MCMC method to sample uniformly from these realizations.
This paper presents DAIDALUS (Detect and Avoid Alerting Logic for Unmanned Systems), a reference implementation of a detect and avoid concept intended to support the integration of Unmanned Aircraft Systems into civil airspace. DAIDALUS consists of self-separation and alerting algorithms that provide situational awareness to UAS remote pilots. These algorithms have been formally specified in a mathematical notation and verified for correctness in an interactive theorem prover. The software implementation has been verified against the formal models and validated against multiple stressing cases jointly developed by the
This paper introduces a static analysis technique for computing formally verified round-off error bounds of floating-point functional expressions. The technique is based on a denotational semantics that computes a symbolic estimation of floating-point round-off errors along with a proof certificate that ensures its correctness. The symbolic estimation can be evaluated on concrete inputs using rigorous enclosure methods to produce formally verified numerical error bounds. The proposed technique is implemented in the prototype research tool PRECiSA (Program Round-off Error Certifier via Static Analysis) and used in the verification of floating-point programs of interest to NASA.
Sturm's theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semi-open interval, not counting multiplicity. A generalization of Sturm's theorem is known as Tarski's theorem, which provides a linear relationship between functions known as Tarski queries and cardinalities of certain sets. The linear system that results from this relationship is in fact invertible and can be used to explicitly count the number of roots of a univariate polynomial on a set defined by a system of polynomial relations. This paper presents a formalization of these results in the PVS theorem prover, including formal proofs of Sturm's and Tarski's theorems. These theorems are at the basis of two decision procedures, which are implemented as computable functions in PVS. The first, based on Sturm's theorem, determines satisfiability of a single polynomial relation over an interval. The second, based on Tarski's theorem, determines the satisfiability of a system of polynomial relations over the real line. The soundness and completeness properties of these decision procedures are formally verified in PVS. The procedures and their correctness properties enable the implementation of PVS strategies for automatically proving existential and universal statements on polynomial systems. Since the decision procedures are formally verified in PVS, the soundness of the strategies depends solely on the internal logic of PVS rather than on an external oracle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.