Breccia-filled eruption conduits are dynamic systems where pressures frequently exceed critical thresholds, generating earthquakes and transmitting fluids. To assess the dynamics of breccia-filled conduits, we examine lava, ash tuff, and hydrothermal breccia ballistics with varying alteration, veining, fractures, and brecciation ejected during the 27 April 2016 phreatic eruption of Whakaari/White Island. We measure connected porosity, strength, and permeability with and without tensile fractures at a range of confining pressures. Many samples are progressively altered with anhydrite, alunite, and silica polymorphs. The measurements show a large range of connected porosity, permeability, and strength. In contrast, the cracked samples show a consistently high permeability. The cracked altered samples have a permeability more sensitive to confining pressure than the unaltered samples. The permeability of our altered ballistics is lower than surface rocks of equivalent porosity, illustrating that mineral precipitation locally blocked pores and cracks. We surmise that alteration within the conduit breccia allows cracks to form, open and close, in response to pore pressure and confining pressure, providing a mechanism for frequent and variable fluid advection pulses to the surface. This produces temporally and spatially variable geophysical and geochemical observations and has implications for volcano monitoring for any volcano system with significant hydrothermal activity.
On 27 April 2016, White Island erupted in a multi-pulse, phreatic event that lasted for ~ 40 min. Six, variably sized pulses generated three ballistic ejections and at least one pyroclastic surge out of the inner crater and onto the main crater floor. Deposit mapping of the pyroclastic surge and directed ballistic ejecta, combined with numerical modelling, is used to constrain the volume of the ejecta and the energetics of the eruption. Vent locations and directionality of the eruption are constrained by the ballistic modelling, suggesting that the vent/s were angled towards the east. Using these data, a model is developed that comports with the field and geophysical data. One of the main factors modifying the dispersal of the eruption deposits is the inner crater wall, which is ~ 20 m high. This wall prevents some of the pyroclastic surge and ballistic ejecta from being deposited onto the main crater floor but also promotes significant inflation of the surge, generating a semi-buoyant plume that deposits ash high on the crater walls. While the eruption is small volume, the complexity determined from the deposits provides a case study with which to assess the relatively frequent hazards posed by active volcanoes that host hydrothermal systems. The deposits of this and similar eruptions are readily eroded, and for complete understanding of volcanic hazards, it is necessary to make observations and collect samples soon after these events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.