Abstract-Businesses and organizations in jurisdictions around the world are required by law to provide their customers and users with information about their business practices in the form of policy documents. Requirements engineers analyze these documents as sources of requirements, but this analysis is a time-consuming and mostly manual process. Moreover, policy documents contain legalese and present readability challenges to requirements engineers seeking to analyze them. In this paper, we perform a large-scale analysis of 2,061 policy documents, including policy documents from the Google Top 1000 most visited websites and the Fortune 500 companies, for three purposes: (1) to assess the readability of these policy documents for requirements engineers; (2) to determine if automated text mining can indicate whether a policy document contains requirements expressed as either privacy protections or vulnerabilities; and (3) to establish the generalizability of prior work in the identification of privacy protections and vulnerabilities from privacy policies to other policy documents. Our results suggest that this requirements analysis technique, developed on a small set of policy documents in two domains, may generalize to other domains.
Requirements prioritization is used in the early phases of software development to determine the order in which requirements should be implemented. Requirements are not all equally important to the final software system because time constraints, expense, and design can each raise the urgency of implementing some requirements before others. Laws and regulations can make requirements prioritization particularly challenging due to the high costs of noncompliance and the substantial amount of domain knowledge needed to make prioritization decisions. In the context of legal requirements, implementation order ideally should be influenced by the laws and regulations governing a given software system. In this paper, we present a prioritization technique for legal requirements. We apply our technique on a set of 63 functional requirements for an open-source electronic health records system that must comply with the U.S. Health Insurance Portability and Accountability Act.
Software engineers build software systems in increasingly regulated environments, and must therefore ensure that software requirements accurately represent obligations described in laws and regulations. Prior research has shown that graduatelevel software engineering students are not able to reliably determine whether software requirements meet or exceed their legal obligations and that professional software engineers are unable to accurately classify cross-references in legal texts. However, no research has determined whether software engineers are able to identify and classify important ambiguities in laws and regulations. Ambiguities in legal texts can make the difference between requirements compliance and non-compliance. Herein, we develop a ambiguity taxonomy based on software engineering, legal, and linguistic understandings of ambiguity. We examine how 17 technologists and policy analysts in a graduate-level course use this taxonomy to identify ambiguity in a legal text. We also examine the types of ambiguities they found and whether they believe those ambiguities should prevent software engineers from implementing software that complies with the legal text. Our research suggests that ambiguity is prevalent in legal texts. In 50 minutes of examination, participants in our case study identified on average 33.47 ambiguities in 104 lines of legal text using our ambiguity taxonomy as a guideline. Our analysis suggests (a) that participants used the taxonomy as intended: as a guide and (b) that the taxonomy provides adequate coverage (97.5%) of the ambiguities found in the legal text.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.