Three-dimensional Digital Image Correlation (3D-DIC) is a non-contact optical-numerical technique for evaluating the dynamic mechanical behavior at the surface of structures and materials, including biological tissues. 3D-DIC can be used to extract shape and full-?eld displacements and strains with high resolution, at various length scales. While various commercial and academic 3D-DIC software exist, the field lacks 3D-DIC packages which offer straightforward calibration and data-merging solutions for multi-view analysis, which is particularly desirable in biomedical applications. To address these limitations, we present MultiDIC, an open-source MATLAB toolbox, featuring the first 3D-DIC software specifically dedicated to multi-view setups. MultiDIC integrates robust two-dimensional subset-based DIC software with specially tailored calibration procedures, to reconstruct the dynamic behavior of surfaces from multiple stereo-pairs. MultiDIC contains novel algorithms to automatically merge meshes from multiple stereopairs, and to compute and visualize 3D shape and full-?eld motion, deformation, and strain. User interfaces provide capabilities to perform 3D-DIC analyses without interacting with MATLAB syntax, while standalone functions also allow proficient MATLAB users to write custom scripts for specific experimental requirements. This paper discusses the challenges underlying multi-view 3D-DIC, details the proposed solutions, and describes the algorithms implemented in MultiDIC. The performance of MultiDIC is tested using a low-cost experimental system featuring a 360-deg 12-camera setup. The software and system are evaluated using measurement of a cylindrical object with known geometry subjected to rigid body motion and measurement of the lower limb of a human subject. The findings confirm that shape, motion, and full-field deformations and strains can be accurately measured, and demonstrate the feasibility of MultiDIC in multi-view in-vivo biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.