In this paper a method is presented for determining the complex permittivity and permeability of linear materials in the frequency domain by a single time-domain measurement; typically, the frequency band extends from VHF through X band. The technique described involves placing an unknown sample in a microwave TEM-mode fixture and exciting the sample with a subnanosecond baseband pulse. The fixture is used to facilitate the measurement of the forward-and back-scattered energy, s21(t) and s,l(t), respectively. It is shown in this paper that the forwardand back-scattered time-domain "signatures" are uniquely related to the intrinsic properties of the materials, namely, e* and A*. By appropriately interpreting s21(t) and sl1(t), one is able to determine the real and imaginary parts of e and u as a function of frequency. Experimental results are presented describing several familiar materials.
Recently, the focus of speech enhancement research has shifted from minimum mean-square error (MMSE) approaches, like the MMSE short-time spectral amplitude (MMSE-STSA) estimator, to state-of-the-art masking-and mapping-based deep learning approaches. We aim to bridge the gap between these two differing speech enhancement approaches. Deep learning methods for MMSE approaches are investigated in this work, with the objective of producing intelligible enhanced speech at a high quality. Since the speech enhancement performance of an MMSE approach improves with the accuracy of the used a priori signal-to-noise ratio (SNR) estimator, a residual long short-term memory (ResLSTM) network is utilised here to accurately estimate the a priori SNR. MMSE approaches utilising the ResLSTM a priori SNR estimator are evaluated using subjective and objective measures of speech quality and intelligibility. The tested conditions include real-world non-stationary and coloured noise sources at multiple SNR levels. MMSE approaches utilising the proposed a priori SNR estimator are able to achieve higher enhanced speech quality and intelligibility scores than recent masking-and mapping-based deep learning approaches. The results presented in this work show that the performance of an MMSE approach to speech enhancement significantly increases when utilising deep learning.
An accurate noise power spectral density (PSD) tracker is an indispensable component of a single-channel speech enhancement system. Bayesian-motivated minimum mean-square error (MMSE)-based noise PSD estimators have been the most prominent in recent time. However, they lack the ability to track highly non-stationary noise sources due to current methods of a priori signal-to-noise (SNR) estimation. This is caused by the underlying assumption that the noise signal changes at a slower rate than the speech signal. As a result, MMSE-based noise PSD trackers exhibit a large tracking delay and produce noise PSD estimates that require bias compensation. Motivated by this, we propose an MMSE-based noise PSD tracker that employs a temporal convolutional network (TCN) a priori SNR estimator. The proposed noise PSD tracker, called DeepMMSE makes no assumptions about the characteristics of the noise or the speech, exhibits no tracking delay, and produces an accurate estimate that requires no bias correction. Our extensive experimental investigation shows that the proposed DeepMMSE method outperforms state-of-the-art noise PSD trackers and demonstrates the ability to track abrupt changes in the noise level. Furthermore, when employed in a speech enhancement framework, the proposed DeepMMSE method is able to outperform state-of-the-art noise PSD trackers, as well as multiple deep learning approaches to speech enhancement.
The existing Kalman filter (KF) suffers from poor estimates of the noise variance and the linear prediction coefficients (LPCs) in real-world noise conditions. This results in a degraded speech enhancement performance. In this paper, a deep learning approach is used to more accurately estimate the noise variance and LPCs, enabling the KF to enhance speech in various noise conditions. Specifically, a deep learning approach to MMSEbased noise power spectral density (PSD) estimation, called DeepMMSE, is used. The estimated noise PSD is used to compute the noise variance. We also construct a whitening filter with its coefficients computed from the estimated noise PSD. It is then applied to the noisy speech, yielding pre-whitened speech for computing the LPCs. The improved noise variance and LPC estimates enable the KF to minimise the residual noise and distortion in the enhanced speech. Experimental results show that the proposed method exhibits higher quality and intelligibility in the enhanced speech than the benchmark methods in various noise conditions for a wide-range of SNR levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.