International audienceMarking the northern boundary of the Tibetan plateau, the Altyn Tagh fault plays a crucial role in accommodatingthe Cenozoic crustal deformation affecting the plateau. However, its initiation time and amount of offset are stillcontroversial despite being key information for the understanding of Tibet evolution. In this study, we present1122 single LA-ICP-MS detrital zircon U–Pb ages obtained from 11 Mesozoic to Cenozoic sandstone samples, collectedalong two sections in the northwestern Qaidam basin (Eboliang and Huatugou). These data are combinedwith new3D seismic reflection profiles to demonstrate that: (1) fromthe Paleocene to early Eocene, the Eboliangsection was approximately located near the present position of Anxi, 360 ± 40 km southwest from its currentlocation along the Altyn Tagh fault, and sediments were mainly derived from the Altyn Tagh Range. At thesame period, the Huatugou section was approximately located near the present position of Tula, ca. 360 kmsouthwest from its current location along the Altyn Tagh fault, and the Eastern Kunlun Range represented a significantsediment source. (2) Left-lateral strike-slip movement along the Altyn Tagh fault initiated during theearly-middle Eocene, resulting in northeastward displacement of the two sections. (3) By early Miocene, the intensivedeformation within the Altyn Tagh Range and northwestern Qaidam basin strongly modified the drainagesystem, preventing the materials derived fromthe Altyn Tagh Range to reach the Eboliang and the Huatugousections. The post-Oligocene clastic material in the western Qaidam basin is generally derived fromlocal sourcesand recycling of the deformed Paleocene to Oligocene strata. From these data, we suggest enhanced tectonic activitywithin the Altyn Tagh Range and northwestern Qaidam basin since Miocene time, and propose an earlymiddleEocene initiation of left-lateral strike-slip faulting leading to a 360 ± 40 km offset along the Altyn Taghfaul
An accurate noise power spectral density (PSD) tracker is an indispensable component of a single-channel speech enhancement system. Bayesian-motivated minimum mean-square error (MMSE)-based noise PSD estimators have been the most prominent in recent time. However, they lack the ability to track highly non-stationary noise sources due to current methods of a priori signal-to-noise (SNR) estimation. This is caused by the underlying assumption that the noise signal changes at a slower rate than the speech signal. As a result, MMSE-based noise PSD trackers exhibit a large tracking delay and produce noise PSD estimates that require bias compensation. Motivated by this, we propose an MMSE-based noise PSD tracker that employs a temporal convolutional network (TCN) a priori SNR estimator. The proposed noise PSD tracker, called DeepMMSE makes no assumptions about the characteristics of the noise or the speech, exhibits no tracking delay, and produces an accurate estimate that requires no bias correction. Our extensive experimental investigation shows that the proposed DeepMMSE method outperforms state-of-the-art noise PSD trackers and demonstrates the ability to track abrupt changes in the noise level. Furthermore, when employed in a speech enhancement framework, the proposed DeepMMSE method is able to outperform state-of-the-art noise PSD trackers, as well as multiple deep learning approaches to speech enhancement.
Northward growth of the Qimen Tagh Range: A new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam Basin. Tectonophysics, Elsevier, 2014, 632, pp.32-47. 10.1016/j.tecto.2014 A C C E P T E D M A N U S C R I P T initially a left-lateral strike-slip fault system rather than a thrusting system. Growth strata indicate an Early Miocene onset age for this strike-slip deformation. However, earthquakes focal mechanisms show that the present-day tectonic pattern of this fault system is dominated by NE-SW transpression. As for the Qimen Tagh fault system, numerous linear geomorphic features and fault scarps indicate that it was again a strike-slip fault system. Deformed sediments within the Adatan Valley prove that strike-slip motion prevailed during the Pleistocene, yet the present day deformation is marked by NE-SW transpression. Collectively, the Kunbei and Qimen Tagh fault systems were initially left-lateral strike-slip fault systems that formed during Early Miocene and Pleistocene respectively. Colligating with these southward younging left-lateral strike-slip faulting ages and the fact that these convex-northward structures converge to the center segment of active Kunlun Fault in the east, we thus considered the Kunbei and Qimen Tagh fault systems as former western segments of the Kunlun Fault once located further south in the present-day location of that fault. These faults gradually migrated northward since the Early Miocene while their kinematics changed from left-lateral strike-slip motion to NE-SW transpression. ACCEPTED MANUSCRIPT A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
The Paleogene Lulehe Formation marks the onset of deposition in the Qaidam basin and preserves evidence of the initial topographic growth of northern Tibet. However, limited outcrops impede understanding of the sedimentary features of the Lulehe Formation as well as the tectonic relationship between the basin and surrounding topography. To fill this gap, we investigated core samples along the basin margin and conducted flexural modeling to estimate the topographic load of the Qilian Shan and Eastern Kunlun Shan during the deposition of the Lulehe Formation. Core samples reveal that the Lulehe Formation mainly consists of distal fluvial to marginal lacustrine deposits and proximal fluvial deposits along the southern margin of the basin while characterized by proximal alluvial fan deposits along the northern margin of the basin. Together with evidence for faulting shown on the seismic profiles, we infer that simultaneous deformation within the Qilian Shan and Altyn Tagh Shan during the Paleogene resulted in accumulation of coarse detrital deposits in the northwestern and northeastern Qaidam basin. The simultaneous deformation within the Altyn Tagh Shan and Qilian Shan since the Paleogene supports the idea that deformation in these two regions is kinematically linked. One-and two-load beam flexural modeling indicates that the topographic load generated by both the Eastern Kunlun Shan and the Qilian Shan is responsible for the subsidence of the Qaidam basin during deposition of the Lulehe Formation. Our results highlight the initial relative high topography in the northern Tibetan plateau during the early Cenozoic.
Abstract:Existing research has revealed that auditory attention can be tracked from ongoing electroencephalography (EEG) signals. The aim of this novel study was to investigate the identification of peoples' attention to a specific auditory object from single-trial EEG signals via entropy measures and machine learning. Approximate entropy (ApEn), sample entropy (SampEn), composite multiscale entropy (CmpMSE) and fuzzy entropy (FuzzyEn) were used to extract the informative features of EEG signals under three kinds of auditory object-specific attention (Rest, Auditory Object1 Attention (AOA1) and Auditory Object2 Attention (AOA2)). The linear discriminant analysis and support vector machine (SVM), were used to construct two auditory attention classifiers. The statistical results of entropy measures indicated that there were significant differences in the values of ApEn, SampEn, CmpMSE and FuzzyEn between Rest, AOA1 and AOA2. For the SVM-based auditory attention classifier, the auditory object-specific attention of Rest, AOA1 and AOA2 could be identified from EEG signals using ApEn, SampEn, CmpMSE and FuzzyEn as features and the identification rates were significantly different from chance level. The optimal identification was achieved by the SVM-based auditory attention classifier using CmpMSE with the scale factor τ = 10. This study demonstrated a novel solution to identify the auditory object-specific attention from single-trial EEG signals without the need to access the auditory stimulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.