Deep level optical spectroscopy (DLOS) and deep level transient spectroscopy (DLTS) measurements performed on Ni/β-Ga2O3 Schottky diodes fabricated on unintentionally doped (010) substrates prepared by edge-defined film-fed growth revealed a rich spectrum of defect states throughout the 4.84 eV bandgap of β-Ga2O3. Five distinct defect states were detected at EC − 0.62 eV, 0.82 eV, 1.00 eV, 2.16 eV, and 4.40 eV. The EC − 0.82 eV and 4.40 eV levels are dominant, with concentrations on the order of 1016 cm−3. The three DLTS-detected traps at EC − 0.62 eV, 0.82 eV, and 1.00 eV are similar to traps reported in Czochralski-grown β-Ga2O3, [K. Irmscher et al., J. Appl. Phys. 110, 063720 (2011)], suggesting possibly common sources. The DLOS-detected states at EC − 2.16 eV and 4.40 eV exhibit significant lattice relaxation effects in their optical transitions associated with strongly bound defects. As a consequence of this study, the Ni/β-Ga2O3 (010) Schottky barrier height was determined to be 1.55 eV, with good consistency achieved between different characterization techniques.
The impact of C incorporation on the deep level spectrum of n-type and semi-insulating GaN:C:Si films grown by rf plasma-assisted molecular-beam epitaxy (MBE) was investigated by the combination of deep level transient spectroscopy, steady-state photocapacitance, and transient deep level optical spectroscopy. The deep level spectra of the GaN:C:Si samples exhibited several band-gap states. A monotonic relation between systematic doping with C and quantitative trap concentration revealed C-related deep levels. A deep acceptor at Ec−2.05eV and a deep donor at Ec−0.11eV are newly reported states, and the latter is the first directly observed deep level attributed to the CGa defect. A configuration-coordinate model involving localized lattice distortion revealed strong evidence that C-related deep levels at Ec−3.0eV and Eν+0.9eV are likely identical and associated with the yellow luminescence in C-doped GaN films. Of the deep levels whose trap concentration increase with C doping, the band-gap states at Ec−3.0 and 3.28eV had the largest concentration, implying that free-carrier compensation by these deep levels is responsible for the semi-insulating behavior of GaN:C:Si films grown by MBE. The differing manner by which C incorporation in GaN may impact electrical conductivity in films grown by MBE and metal-organic chemical-vapor deposition is discussed.
Gallium Oxide has undergone rapid technological maturation over the last decade, pushing it to the forefront of ultra-wide band gap semiconductor technologies. Maximizing the potential for a new semiconductor system requires a concerted effort by the community to address technical barriers which limit performance. Due to the favorable intrinsic material properties of gallium oxide, namely, critical field strength, widely tunable conductivity, mobility, and melt-based bulk growth, the major targeted application space is power electronics where high performance is expected at low cost. This Roadmap presents the current state-of-the-art and future challenges in 15 different topics identified by a large number of people active within the gallium oxide research community. Addressing these challenges will enhance the state-of-the-art device performance and allow us to design efficient, high-power, commercially scalable microelectronic systems using the newest semiconductor platform.
Modulation-doped heterostructures are a key enabler for realizing high mobility and better scaling properties for high performance transistors. We report the realization of a modulation-doped two-dimensional electron gas (2DEG) at the β-(Al0.2Ga0.8)2O3/Ga2O3 heterojunction by silicon delta doping. The formation of a 2DEG was confirmed using capacitance voltage measurements. A modulation-doped 2DEG channel was used to realize a modulation-doped field-effect transistor. The demonstration of modulation doping in the β-(Al0.2Ga0.8)2O3/Ga2O3 material system could enable heterojunction devices for high performance electronics.
The effect of excess C incorporation on the deep level spectrum of n-type GaN grown by metalorganic chemical vapor deposition was investigated. Low-pressure (LP) growth conditions were used to intentionally incorporate excess C compared to atmospheric pressure (AP) growth conditions. GaN samples with high C content are found to be highly resistive, and samples codoped with C and Si are heavily compensated. From a comparison of deep level optical spectroscopy and deep level transient spectroscopy measurements of the LP-grown codoped GaN:C:Si sample with the AP-grown unintentionally doped GaN, two deep levels at Ec−Et=1.35 and 3.28 eV are observed to have a direct relation to excess C incorporation. Comparing these activation energies to previous theoretical studies strongly suggests that the levels may be associated with a C interstitial and CN defect, respectively. These results suggest that C forms not only a shallow acceptor level but also a deep acceptor level in GaN, and these levels contribute to the compensation of the free carriers in n-type GaN:C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.