We report on an extensive study of the two-dimensional electron gas (2DEG) structures containing AlN layers. It is shown that the presence of large polarization fields in the AlN barrier layer in AlN/GaN heterostructures results in high values of the 2DEG sheet density of up to 3.6×1013 cm−2. Room-temperature sheet resistance of 180 Ω/□ is demonstrated in the AlN/GaN structure with a 35 Å AlN barrier. As a result of reduced alloy disorder scattering, low-temperature electron mobility is significantly enhanced in AlN/GaN heterostructures in comparison to AlGaN/GaN structures with similar values of the 2DEG sheet density. The growth of GaN cap layers on top of AlN/GaN structures with relatively thick (∼35 Å) AlN barriers is found to lead to a significant decrease in the 2DEG sheet density. However, inserting a thin (∼10 Å) AlN layer between AlxGa1−xN and GaN in the AlxGa1−xN/GaN (x∼0.2–0.45) 2DEG structures does not affect the 2DEG sheet density and results in an increase of the low-temperature electron mobility in comparison to standard AlGaN/GaN structures. At room temperature, a combination of the high 2DEG sheet density of 2.15×1013 cm−2 and high electron mobility of 1500 cm2/V s in Al0.37Ga0.63N/AlN/GaN yielded a low sheet resistance value of 194 Ω/□.
Two schemes of nucleation and growth of gallium nitride on Si(111) substrates are investigated and the structural and electrical properties of the resulting films are reported. Gallium nitride films grown using a 10–500 nm-thick AlN buffer layer deposited at high temperature (∼1050 °C) are found to be under 260–530 MPa of tensile stress and exhibit cracking, the origin of which is discussed. The threading dislocation density in these films increases with increasing AlN thickness, covering a range of 1.1 to >5.8×109 cm−2. Films grown using a thick, AlN-to-GaN graded buffer layer are found to be under compressive stress and are completely crack free. Heterojunction field effect transistors fabricated on such films result in well-defined saturation and pinch-off behavior with a saturated current of ∼525 mA/mm and a transconductance of ∼100 mS/mm in dc operation.
The effect of excess C incorporation on the deep level spectrum of n-type GaN grown by metalorganic chemical vapor deposition was investigated. Low-pressure (LP) growth conditions were used to intentionally incorporate excess C compared to atmospheric pressure (AP) growth conditions. GaN samples with high C content are found to be highly resistive, and samples codoped with C and Si are heavily compensated. From a comparison of deep level optical spectroscopy and deep level transient spectroscopy measurements of the LP-grown codoped GaN:C:Si sample with the AP-grown unintentionally doped GaN, two deep levels at Ec−Et=1.35 and 3.28 eV are observed to have a direct relation to excess C incorporation. Comparing these activation energies to previous theoretical studies strongly suggests that the levels may be associated with a C interstitial and CN defect, respectively. These results suggest that C forms not only a shallow acceptor level but also a deep acceptor level in GaN, and these levels contribute to the compensation of the free carriers in n-type GaN:C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.