Between 1999 and 2005 a sampling campaign was conducted to identify and quantify the major species of atmospheric nonmethane hydrocarbons (NMHCs) in United States cities. Whole air canister samples were collected in 28 cities and analyzed for methane, carbon monoxide (CO) and NMHCs. Ambient mixing ratios exhibited high inter-and intra-city variability, often having standard deviations in excess of 50% of the mean value. For this reason, ratios of individual NMHC to CO, a combustion tracer, were examined to facilitate comparison between cities. Ratios were taken from correlation plots between the species of interest and CO, and most NMHCs were found to have correlation coefficients (r 2) greater than 0.6, particularly ethene, ethyne and benzene, highlighting the influence of vehicular emissions on NMHC mixing ratios. Notable exceptions were the short-chain alkanes, which generally had poor correlations with CO. Ratios of NMHC vs. CO were also used to identify those cities with unique NMHC sources.
Light alkane hydrocarbons are present in major quantities in the near-surface atmosphere of Texas, Oklahoma, and Kansas during both autumn and spring seasons. In spring 2002, maximum mixing ratios of ethane [34 parts per 10 9 by volume (ppbv)], propane (20 ppbv), and n-butane (13 ppbv) were observed in north-central Texas. The elevated alkane mixing ratios are attributed to emissions from the oil and natural gas industry. Measured alkyl nitrate mixing ratios were comparable to urban smog values, indicating active photochemistry in the presence of nitrogen oxides, and therefore with abundant formation of tropospheric ozone. We estimate that 4 -6 teragrams of methane are released annually within the region and represents a significant fraction of the estimated total U.S. emissions. This result suggests that total U.S. natural gas emissions may have been underestimated. Annual ethane emissions from the study region are estimated to be 0.3-0.5 teragrams.W e have performed two regional studies in different seasons of hydrocarbon and halocarbon mixing ratios in surfacelevel air sampled within the southwestern United States. Elevated atmospheric mixing ratios of C 1 -C 4 alkanes and C 2 -C 4 alkyl nitrates (RONO 2 ) were measured over much of the region during both studies. The alkyl nitrate enhancements show that significant photochemistry analogous to urban smog formation is occurring within the source region. The release of hydrocarbons into the atmosphere contributes to photochemical ozone (O 3 ) production, with related adverse health effects, reduction in plant growth, and climate change (1-3). The production, storage, and transport of oil and natural gas are a major global source of hydrocarbons into the atmosphere (4), and the southwestern states have some of the largest oil and natural gas reserves in the United States. Although the U.S. natural gas industry has been estimated to account for Ϸ20% of the total U.S. anthropogenic methane (CH 4 ) emissions (5), the global budgets of light (C 2 -C 4 ) alkanes, including their emissions from the oil and natural gas industry, are more poorly assessed.The C 2 -C 4 alkanes have globally averaged lifetimes ranging from Ϸ2 months for ethane to several days for the butanes (6). Because of their short lifetimes, the atmospheric concentrations of light alkanes are variable and depend on the number and strength of nearby emission sources. By contrast, CH 4 is by far the most abundant hydrocarbon in the atmosphere, in part because of its 8-year atmospheric lifetime (7), which allows it to be widely distributed throughout both the northern and southern hemispheres. The greater reactivity of C 2 -C 4 alkanes relative to CH 4 ensures that a much larger fraction of the former will react in the area where the emissions occur, making the combined C 2 -C 4 alkane contributions more important for local and regional O 3 formation than the influence of the incremental local increases in CH 4 .In the troposphere, photochemical O 3 production begins with the attack of parent hydrocarbon...
[1] A steady state model, constrained by a number of measured quantities, was used to derive peroxy radical levels for the conditions of the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign. The analysis is made using data collected aboard the NCAR/NSF C-130 aircraft from February through May 2000 at latitudes from 40°to 85°N, and at altitudes from the surface to 7.6 km. HO 2 + RO 2 radical concentrations were measured during the experiment, which are compared with model results over the domain of the study showing good agreement on the average. Average measurement/model ratios are 1.04 (s = 0.73) and 0.96 (s = 0.52) for the MLB and HLB, respectively. Budgets of total peroxy radical levels as well as of individual free radical members were constructed, which reveal interesting differences compared to studies at lower latitudes. The midlatitude part of the study region is a significant net source of ozone, while the high latitudes constitute a small net sink leading to the hypothesis that transport from the middle latitudes can explain the observed increase in ozone in the high latitudes. Radical reservoir species concentrations are modeled and compared with the observations. For most conditions, the model does a good job of reproducing the formaldehyde observations, but the peroxide observations are significantly less than steady state for this study. Photostationary state (PSS) derived total peroxy radical levels and NO/NO 2 ratios are compared with the measurements and the model; PSS-derived results are higher than observations or the steady state model at low NO concentrations.
The impact of primary fine particulate matter (PM2.5) from ship emissions within the Southern California Air Basin is quantified by comparing in-stack vanadium (V) and nickel (Ni) measurements from in-use ocean-going vessels (OGVs) with ambient measurements made at 10 monitoring stations throughout Southern California. V and Ni are demonstrated as robust markers for the combustion of heavy fuel oil in OGVs, and ambient measurements of fine particulate V and Ni within Southern California are shown to decrease inversely with increased distance from the ports of Los Angeles and Long Beach (ports). High levels of V and Ni were observed from in-stack emission measurements conducted on the propulsion engines of two different in-use OGVs. The in-stack V and Ni emission rates (g/h) normalized by the V and Ni contents in the fuel tested correlates with the stack total PM emission rates (g/h). The normalized emission rates are used to estimate the primary PM2.5 contributions from OGVs at 10 monitoring locations within Southern California. Primary PM2.5 contributions from OGVs were found to range from 8.8% of the total PM2.5 at the monitoring location closest to the port (West Long Beach) to 1.4% of the total PM2.5 at the monitoring location 80 km inland (Rubidoux). The calculated OGV contributions to ambient PM2.5 measurements at the 10 monitoring sites agree well with estimates developed using an emission inventory based regional model. Results of this analysis will be useful in determining the impacts of primary particulate emissions from OGVs upon worldwide communities downwind of port operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.