Persistent bacteria, including persister cells within surface-attached biofilms and slow-growing pathogens lead to chronic infections that are tolerant to antibiotics. Here, we describe the structure-activity relationships of a series of halogenated phenazines (HP) inspired by 2-bromo-1-hydroxyphenazine 1. Using multiple synthetic pathways, we probed diverse substitutions of the HP scaffold in the 2-, 4-, 7-, and 8-positions, providing critical information regarding their antibacterial and bacterial eradication profiles. Halogenated phenazine 14 proved to be the most potent biofilm-eradicating agent (≥99.9% persister cell killing) against MRSA (MBEC < 10 μM), MRSE (MBEC = 2.35 μM), and VRE (MBEC = 0.20 μM) biofilms while 11 and 12 demonstrated excellent antibacterial activity against M. tuberculosis (MIC = 3.13 μM). Unlike antimicrobial peptide mimics that eradicate biofilms through the general lysing of membranes, HPs do not lyse red blood cells. HPs are promising agents that effectively target persistent bacteria while demonstrating negligible toxicity against mammalian cells.
Conventional antibiotics are ineffective against non-replicating bacteria (for example, bacteria within biofilms). We report a series of halogenated phenazines (HP), inspired by marine antibiotic 1, that targets persistent bacteria. HP 14 demonstrated the most potent biofilm eradication activities to date against MRSA, MRSE, and VRE biofilms (MBEC = 0.2-12.5 μM), as well as the effective killing of MRSA persister cells in non-biofilm cultures. Frontline MRSA treatments, vancomycin and daptomycin, were unable to eradicate MRSA biofilms or non-biofilm persisters alongside 14. HP 13 displayed potent antibacterial activity against slow-growing M. tuberculosis (MIC = 3.13 μM), the leading cause of death by bacterial infection around the world. HP analogues effectively target persistent bacteria through a mechanism that is non-toxic to mammalian cells and could have a significant impact on treatments for chronic bacterial infections.
Bacteria
utilize multiple mechanisms that enable them to gain or
acquire resistance to antibiotic therapies during the treatment of
infections. In addition, bacteria form biofilms which are surface-attached
communities of enriched populations containing persister cells encased
within a protective extracellular matrix of biomolecules, leading
to chronic and recurring antibiotic-tolerant infections. Antibiotic
resistance and tolerance are major global problems that require innovative
therapeutic strategies to address the challenges associated with pathogenic
bacteria. Historically, natural products have played a critical role
in bringing new therapies to the clinic to treat life-threatening
bacterial infections. This Perspective provides an overview of antibiotic
resistance and tolerance and highlights recent advances (chemistry,
biology, drug discovery, and development) from various research programs
involved in the discovery of new antibacterial agents inspired by
a diverse series of natural product antibiotics.
Bacterial biofilms are surface-attached communities comprised of nonreplicating persister cells housed within a protective extracellular matrix. Biofilms display tolerance toward conventional antibiotics, occur in ∼80% of infections, and lead to >500000 deaths annually. We recently identified halogenated phenazine (HP) analogues which demonstrate biofilm-eradicating activities against priority pathogens; however, the synthesis of phenazines presents limitations. Herein, we report a refined HP synthesis which expedited the identification of improved biofilm-eradicating agents. 1-Methoxyphenazine scaffolds were generated through a Buchwald-Hartwig cross-coupling (70% average yield) and subsequent reductive cyclization (68% average yield), expediting the discovery of potent biofilm-eradicating HPs (e.g., 61: MRSA BAA-1707 MBEC = 4.69 μM). We also developed bacterial-selective prodrugs (reductively activated quinone-alkyloxycarbonyloxymethyl moiety) to afford HP 87, which demonstrated excellent antibacterial and biofilm eradication activities against MRSA BAA-1707 (MIC = 0.15 μM, MBEC = 12.5 μM). Furthermore, active HPs herein exhibit negligible cytotoxic or hemolytic effects, highlighting their potential to target biofilms.
Conventional antibiotics are ineffective against nonreplicating bacteria (for example,bacteria within biofilms). We report as eries of halogenated phenazines (HP), inspired by marine antibiotic 1,t hat targets persistent bacteria. HP 14 demonstrated the most potent biofilm eradication activities to date against MRSA, MRSE, and VRE biofilms (MBEC = 0.2-12.5 mM), as well as the effective killing of MRSA persister cells in non-biofilm cultures.F rontline MRSA treatments,v ancomycin and daptomycin, were unable to eradicate MRSA biofilms or non-biofilm persisters alongside 14.H P13 displayed potent antibacterial activity against slow-growing M. tuberculosis (MIC = 3.13 mM), the leading cause of death by bacterial infection around the world. HP analogues effectively target persistent bacteria through am echanism that is non-toxic to mammalian cells and could have asignificant impact on treatments for chronic bacterial infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.