Engineered nucleases that cleave specific DNA sequences in vivo are valuable reagents for targeted mutagenesis. Here we report a new class of sequence-specific nucleases created by fusing transcription activator-like effectors (TALEs) to the catalytic domain of the FokI endonuclease. Both native and custom TALE-nuclease fusions direct DNA double-strand breaks to specific, targeted sites.
Summary
Cassava (Manihot esculenta) feeds c. 800 million people world‐wide. Although this crop displays high productivity under drought and poor soil conditions, it is susceptible to disease, postharvest deterioration and the roots contain low nutritional content.Here, we provide molecular identities for 11 cassava tissue/organ types through RNA‐sequencing and develop an open access, web‐based interface for further interrogation of the data.Through this dataset, we consider the physiology of cassava. Specifically, we focus on identification of the transcriptional signatures that define the massive, underground storage roots used as a food source and the favored target tissue for transgene integration and genome editing, friable embryogenic callus (FEC). Further, we identify promoters able to drive strong expression in multiple tissue/organs.The information gained from this study is of value for both conventional and biotechnological improvement programs.
Summary
Xanthomonas transcription activator‐like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector‐activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it.
We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99A and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc).
Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99A, a PXO99A derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences.
Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements.
SummaryGenomes of the rice (Oryza sativa) xylem and mesophyll pathogens Xanthomonas oryzae pv. oryzae (Xoo) and pv. oryzicola (Xoc) encode numerous secreted transcription factors called transcription activator-like (TAL) effectors. In a few studied rice varieties, some of these contribute to virulence by activating corresponding host susceptibility genes. Some activate disease resistance genes. The roles of X. oryzae TAL effectors in diverse rice backgrounds, however, are poorly understood.Xoo TAL effectors that promote infection by activating SWEET sucrose transporter genes were expressed in TAL effector-deficient X. oryzae strain X11-5A, and assessed in 21 rice varieties. Some were also tested in Xoc on variety Nipponbare. Several Xoc TAL effectors were tested in X11-5A on four rice varieties.Xoo TAL effectors enhanced X11-5A virulence on most varieties, but to varying extents depending on the effector and variety. SWEET genes were activated in all tested varieties, but increased virulence did not correlate with activation level. SWEET activators also enhanced Xoc virulence on Nipponbare. Xoc TAL effectors did not alter X11-5A virulence.SWEET-targeting TAL effectors contribute broadly and non-tissue-specifically to virulence in rice, and their function is affected by host differences besides target sequences. Further, the utility of X11-5A for characterizing individual TAL effectors in rice was established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.