Elastohydrodynamic lubrication over soft substrates is of importance in a number of biomedical problems: From lubrication of the eye surface by the tear film, to lubrication of joints by synovial fluid, to lubrication between the pleural surfaces that protect the lungs and other organs. Such flows are also important for the drug delivery functions of vehicles for anti-HIV topical microbicides. These are intended to inhibit transmission into vulnerable mucosa, e.g., in the vagina. First generation prototype microbicides have gel vehicles, which spread after insertion and coat luminal surfaces. Effectiveness derives from potency of the active ingredients and completeness and durability of coating. Delivery vehicle rheology, luminal biomechanical properties, and the force due to gravity influence the coating mechanics. We develop a framework for understanding the relative importance of boundary squeezing and body forces on the extent and speed of the coating that results. A single dimensionless number, independent of viscosity, characterizes the relative influences of squeezing and gravitational acceleration on the shape of spreading in the Newtonian case. A second scale, involving viscosity, determines the spreading rate. In the case of a shear-thinning fluid, the Carreau number also plays a role. Numerical solutions were developed for a range of the dimensionless parameter and compared well with asymptotic theory in the limited case where such results can be obtained. Results were interpreted with respect to trade-offs between wall elasticity, longitudinal forces, bolus viscosity, and bolus volume. These provide initial insights of practical value for formulators of gel delivery vehicles for anti-HIV microbicidal formulations.
The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Lemont, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.
The development, characterization, and qualification testing of nuclear fuel at Idaho National Laboratory's Advanced Test Reactor (ATR) requires extensive design and analysis activities prior to the insertion of an irradiation experiment in-pile. Significant effort is made in the design and development phase of all in-pile experiments to ensure that the maximum feasible impacts of all necessary experimental requirements are satisfied. The advancement of fuel, cladding, and in-reactor materials technology in recent years has introduced complexities associated with the design and construct of in-pile experiments necessitating deeper understanding of boundary conditions and increasingly comprehensive observations resulting from the experiment. Each unique experiment must be assessed for neutronics response, thermal/hydraulic/hydrodynamic performance, and structural integrity. This is accomplished either analytically, computationally, or experimentally, or some combination thereof, prior to insertion into the ATR. The various effects are interrelated to various degrees, such as the case with the experiment temperature affecting the thermal cross section of the fuel or the increased temperature of the experiment's materials reducing the mechanical strength of the assemblies. Additionally, the feedback between the experiment's response to a reactor transient could alter the neutron flux profile of the reactor during the transient. Each experiment must therefore undergo a barrage of analyses to assure the ATR operational safety review committee that the insertion and irradiation of the experiment will not detrimentally affect the safe operational envelope of the reactor. In many cases, the nuclear fuel being tested can be double-encapsulated to ensure safety margins are adequately addressed, whereas failed fuel would be encased in a protective capsule. In other cases, the experiments can be inserted in a self-contained loop that passes through the reactor core, remaining isolated from the primary coolant. In the case of research reactor fuel, however, the fuel plates must be tested in direct contact with the reactor coolant, and being fuel designed for high neutron fluxes, they are inherently power-dense plates. The combination of plate geometry, high-power density, and direct contact with primary coolant creates a scenario where the neutronic/thermomechanic/ hydrodynamic characteristics of the fuel plates are tightly coupled, necessitating as complete characterization as possible to support the safety and programmatic assessments, thus enabling a successful experiment. This paper explores the efforts of the U.S. High-Performance Research Reactor program to thermomechanically/ hydromechanically characterize the program's wide variety of experiments, which range from stacks of miniplate capsules to full-sized, geometrically representative curved plates. Special attention is given to instances where the combination of experimental characterization and analytical assessment has reduced uncertainties of the safety margins, ...
The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Lemont, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.
The U.S. High Performance Research Reactor conversions fuel development team is focused on developing and qualifying the uranium-molybdenum (U-Mo) alloy monolithic fuel to support conversion of domestic research reactors to low enriched uranium. Several previous irradiations have demonstrated the favorable behavior of the monolithic fuel. The Full Size Plate 1 (FSP-1) fuel plate experiment will be irradiated in the northeast (NE) flux trap of the Advanced Test Reactor (ATR). This fueled experiment contains six aluminum-clad fuel plates consisting of monolithic U-Mo fuel meat. Flow testing experimentation and hydraulic analysis have been performed on the FSP-1 experiment to be irradiated in the ATR at the Idaho National Laboratory (INL). A flow test experiment mockup of the FSP-1 experiment was completed at Oregon State University. Results of several flow test experiments are compared with analyses. This paper reports and shows hydraulic analyses are nearly identical to the flow test results. A water channel velocity of 14.0 meters per second is targeted between the fuel plates. Comparisons between FSP-1 measurements and this target will be discussed. This flow rate dominates the flow characteristics of the experiment and model. Separate branch flows have minimal effect on the overall experiment. A square flow orifice was placed to control the flowrate through the experiment. Four different orifices were tested. A pressure differential versus flow rate curve for each orifice is reported herein. Fuel plates with depleted uranium in the fuel meat zone were used in one of the flow tests. This test was performed to evaluate flow test vibration with actual fuel meat densities and reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.